Long Text Generation via Adversarial Training with Leaked Information

计算机科学 判别式 隐藏字幕 生成语法 人工智能 判决 发电机(电路理论) 图灵试验 词(群论) 对抗制 生成模型 自然语言处理
作者
Jiaxian Guo,Sidi Lu,Han Cai,Weinan Zhang,Yong Yu,Jun Wang
出处
期刊:arXiv: Computation and Language 被引量:70
摘要

Automatically generating coherent and semantically meaningful text has many applications in machine translation, dialogue systems, image captioning, etc. Recently, by combining with policy gradient, Generative Adversarial Nets (GAN) that use a discriminative model to guide the training of the generative model as a reinforcement learning policy has shown promising results in text generation. However, the scalar guiding signal is only available after the entire text has been generated and lacks intermediate information about text structure during the generative process. As such, it limits its success when the length of the generated text samples is long (more than 20 words). In this paper, we propose a new framework, called LeakGAN, to address the problem for long text generation. We allow the discriminative net to leak its own high-level extracted features to the generative net to further help the guidance. The generator incorporates such informative signals into all generation steps through an additional Manager module, which takes the extracted features of current generated words and outputs a latent vector to guide the Worker module for next-word generation. Our extensive experiments on synthetic data and various real-world tasks with Turing test demonstrate that LeakGAN is highly effective in long text generation and also improves the performance in short text generation scenarios. More importantly, without any supervision, LeakGAN would be able to implicitly learn sentence structures only through the interaction between Manager and Worker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzzjzjjjj发布了新的文献求助10
刚刚
天天快乐应助daniel采纳,获得10
刚刚
刚刚
1秒前
暗夜男完成签到 ,获得积分10
1秒前
1秒前
悦耳的绿旋完成签到,获得积分10
2秒前
阿翡呐完成签到,获得积分10
2秒前
我是老大应助DHY采纳,获得10
2秒前
2秒前
3秒前
3秒前
hyjcnhyj完成签到,获得积分10
4秒前
科研通AI2S应助DE2022采纳,获得10
4秒前
阿翡呐发布了新的文献求助10
5秒前
一坤发布了新的文献求助10
6秒前
一觉醒来完成签到,获得积分10
6秒前
只谈风月完成签到,获得积分10
6秒前
cy发布了新的文献求助30
7秒前
Django发布了新的文献求助10
7秒前
7秒前
吴彦祖发布了新的文献求助20
8秒前
9秒前
Gorge完成签到,获得积分10
9秒前
fengchun311发布了新的文献求助30
9秒前
10秒前
杨枝甘露樱桃完成签到,获得积分10
10秒前
11秒前
来日可期发布了新的文献求助10
11秒前
科目三应助yuki采纳,获得10
12秒前
RR完成签到,获得积分10
12秒前
NexusExplorer应助Cccrik采纳,获得10
12秒前
哭泣剑封完成签到,获得积分10
12秒前
搜集达人应助121采纳,获得10
12秒前
yomi发布了新的文献求助10
12秒前
13秒前
13秒前
Dr.Lee完成签到 ,获得积分10
13秒前
14秒前
14秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180554
求助须知:如何正确求助?哪些是违规求助? 2830814
关于积分的说明 7981328
捐赠科研通 2492536
什么是DOI,文献DOI怎么找? 1329631
科研通“疑难数据库(出版商)”最低求助积分说明 635745
版权声明 602954