Long Text Generation via Adversarial Training with Leaked Information

计算机科学 判别式 隐藏字幕 生成语法 人工智能 判决 发电机(电路理论) 图灵试验 词(群论) 对抗制 生成模型 自然语言处理
作者
Jiaxian Guo,Sidi Lu,Han Cai,Weinan Zhang,Yong Yu,Jun Wang
出处
期刊:arXiv: Computation and Language 被引量:70
摘要

Automatically generating coherent and semantically meaningful text has many applications in machine translation, dialogue systems, image captioning, etc. Recently, by combining with policy gradient, Generative Adversarial Nets (GAN) that use a discriminative model to guide the training of the generative model as a reinforcement learning policy has shown promising results in text generation. However, the scalar guiding signal is only available after the entire text has been generated and lacks intermediate information about text structure during the generative process. As such, it limits its success when the length of the generated text samples is long (more than 20 words). In this paper, we propose a new framework, called LeakGAN, to address the problem for long text generation. We allow the discriminative net to leak its own high-level extracted features to the generative net to further help the guidance. The generator incorporates such informative signals into all generation steps through an additional Manager module, which takes the extracted features of current generated words and outputs a latent vector to guide the Worker module for next-word generation. Our extensive experiments on synthetic data and various real-world tasks with Turing test demonstrate that LeakGAN is highly effective in long text generation and also improves the performance in short text generation scenarios. More importantly, without any supervision, LeakGAN would be able to implicitly learn sentence structures only through the interaction between Manager and Worker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
不安饼干完成签到 ,获得积分10
2秒前
活泼的飞鸟完成签到,获得积分10
2秒前
3秒前
xuyun发布了新的文献求助10
3秒前
3秒前
zzcres完成签到,获得积分10
5秒前
eeeee完成签到 ,获得积分10
5秒前
乐观德地完成签到,获得积分10
6秒前
大个应助yf_zhu采纳,获得10
6秒前
llk发布了新的文献求助10
7秒前
一只大肥猫完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
9秒前
9秒前
科研通AI5应助GGG采纳,获得10
10秒前
10秒前
12秒前
Ann发布了新的文献求助20
12秒前
12秒前
buno应助duxinyue采纳,获得10
12秒前
xlj发布了新的文献求助10
13秒前
13秒前
可爱的函函应助zhen采纳,获得10
14秒前
研友_VZG7GZ应助dingdong采纳,获得10
15秒前
15秒前
李成恩完成签到 ,获得积分10
16秒前
心碎的黄焖鸡完成签到 ,获得积分10
16秒前
琪琪扬扬发布了新的文献求助10
17秒前
18秒前
18秒前
宗磬完成签到,获得积分10
19秒前
NexusExplorer应助搞怪不言采纳,获得10
20秒前
科研通AI5应助一天八杯水采纳,获得10
21秒前
21秒前
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808