亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep computational pathology in breast cancer

计算机科学 人工智能 数字化病理学 背景(考古学) 机器学习 深度学习 工作量 图像处理 医学诊断 医学影像学 模式识别(心理学) 病理 图像(数学) 医学 操作系统 古生物学 生物
作者
Andrea Duggento,Allegra Conti,Alessandro Mauriello,Maria Guerrisi,Nicola Toschi
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:72: 226-237 被引量:57
标识
DOI:10.1016/j.semcancer.2020.08.006
摘要

Deep Learning (DL) algorithms are a set of techniques that exploit large and/or complex real-world datasets for cross-domain and cross-discipline prediction and classification tasks. DL architectures excel in computer vision tasks, and in particular image processing and interpretation. This has prompted a wave of disruptingly innovative applications in medical imaging, where DL strategies have the potential to vastly outperform human experts. This is particularly relevant in the context of histopathology, where whole slide imaging (WSI) of stained tissue in conjuction with DL algorithms for their interpretation, selection and cancer staging are beginning to play an ever increasing role in supporting human operators in visual assessments. This has the potential to reduce everyday workload as well as to increase precision and reproducibility across observers, centers, staining techniques and even pathologies. In this paper we introduce the most common DL architectures used in image analysis, with a focus on histopathological image analysis in general and in breast histology in particular. We briefly review how, state-of-art DL architectures compare to human performance on across a number of critical tasks such as mitotic count, tubules analysis and nuclear pleomorphism analysis. Also, the development of DL algorithms specialized to pathology images have been enormously fueled by a number of world-wide challenges based on large, multicentric image databases which are now publicly available. In turn, this has allowed most recent efforts to shift more and more towards semi-supervised learning methods, which provide greater flexibility and applicability. We also review all major repositories of manually labelled pathology images in breast cancer and provide an in-depth discussion of the challenges specific to training DL architectures to interpret WSI data, as well as a review of the state-of-the-art methods for interpretation of images generated from immunohistochemical analysis of breast lesions. We finally discuss the future challenges and opportunities which the adoption of DL paradigms is most likely to pose in the field of pathology for breast cancer detection, diagnosis, staging and prognosis. This review is intended as a comprehensive stepping stone into the field of modern computational pathology for a transdisciplinary readership across technical and medical disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
cc完成签到,获得积分10
24秒前
耳东陈完成签到 ,获得积分10
58秒前
1分钟前
zho发布了新的文献求助10
1分钟前
1分钟前
CaoJing完成签到 ,获得积分10
1分钟前
2分钟前
幸福冷荷发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
CHEM_XIE完成签到,获得积分10
2分钟前
2分钟前
无与伦比完成签到 ,获得积分10
2分钟前
幸福冷荷完成签到,获得积分10
3分钟前
3分钟前
3分钟前
zho发布了新的文献求助10
4分钟前
善学以致用应助Zhouyang采纳,获得10
5分钟前
zho发布了新的文献求助10
5分钟前
阿巴阿巴完成签到,获得积分10
5分钟前
阿巴阿巴发布了新的文献求助10
5分钟前
6分钟前
6分钟前
7分钟前
7分钟前
breeze完成签到,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
爱学习发布了新的文献求助30
8分钟前
8分钟前
YUYUYU完成签到 ,获得积分10
9分钟前
9分钟前
zho发布了新的文献求助10
9分钟前
耿舒婷完成签到,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
Lucas应助科研通管家采纳,获得10
10分钟前
bkagyin应助就看看采纳,获得10
10分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388430
求助须知:如何正确求助?哪些是违规求助? 3000764
关于积分的说明 8793674
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471937
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313