人工智能
人工神经网络
机器学习
尖峰神经网络
深度学习
作者
Nabil Imam,Thomas A. Cleland
标识
DOI:10.1038/s42256-020-0159-4
摘要
We present a neural algorithm for the rapid online learning and identification of odourant samples under noise, based on the architecture of the mammalian olfactory bulb and implemented on the Intel Loihi neuromorphic system. As with biological olfaction, the spike timing-based algorithm utilizes distributed, event-driven computations and rapid (one shot) online learning. Spike timing-dependent plasticity rules operate iteratively over sequential gamma-frequency packets to construct odour representations from the activity of chemosensor arrays mounted in a wind tunnel. Learned odourants then are reliably identified despite strong destructive interference. Noise resistance is further enhanced by neuromodulation and contextual priming. Lifelong learning capabilities are enabled by adult neurogenesis. The algorithm is applicable to any signal identification problem in which high-dimensional signals are embedded in unknown backgrounds. Integrating knowledge about the circuit-level organization of the brain into neuromorphic artificial systems is a challenging research problem. The authors present a neural algorithm for the learning of odourant signals and their robust identification under noise, based on the architecture of the mammalian olfactory bulb and implemented on the Intel Loihi neuromorphic system.
科研通智能强力驱动
Strongly Powered by AbleSci AI