PDB94 PREDICTIVE MODELS USING MACHINE LEARNING FOR MICROVASCULAR COMPLICATIONS IN PATIENTS WITH TYPE 1 DIABETES: A SYSTEMATIC LITERATURE REVIEW

医学 逻辑回归 肾病 视网膜病变 并发症 糖尿病 糖尿病性视网膜病变 1型糖尿病 决策树 系统回顾 内科学 梅德林 机器学习 计算机科学 内分泌学 法学 政治学
作者
Qi Xu,Sujit S. Sansgiry
出处
期刊:Value in Health [Elsevier]
卷期号:22: S590-S590
标识
DOI:10.1016/j.jval.2019.09.976
摘要

Microvascular complications can adversely impact disease prognosis in adult patients with type 1 diabetes (T1D). Early identification of patients at risk using predictive models through machine learning (ML) can help in T1D management. The objective of current review was to systematically identify and summarize published research on predictive models using ML for microvascular complications (diabetic nephropathy, retinopathy, and neuropathy) in adult T1D patients. Articles were identified from four prior reviews. An additional targeted review of English literature was undertaken in PubMed and Google Scholar from Jan 1, 2016 to May 31, 2019. Following concepts were used in combination in search queries: diabetes, microvascular complication, risk model, and ML. Studies analyzing image data, not developing predictive models, not focusing on an outcome of microvascular complication, not differentiating adult T1D patients, or letters, opinions, and posters were excluded. A total of 6 studies met the eligibility criteria. Four studies developed risk models in T1D patients, whereas two used type of diabetes as a predictor. Diabetic retinopathy, nephropathy and neuropathy were assessed in 3, 3, and 2 studies, respectively. Predictions were based on data from clinical trials (n=2, US:1, Europe:1), EHR (n=3, US:1, Europe:2) and cross-sectional questionnaires (n=1, Iran). Commonly used ML methods included classification and regression tree (CART, including random forest, n=3), support vector machines (n=2), logistic regression (n=2), and neural networks (n=1). Model performance was evaluated by c-statistics (n=3), accuracy (n=2) and confidence intervals (CIs, n=1). Common predictors across complications included age, gender, diabetes duration, BMI, blood pressure, lipid level, and mean or a single A1C value. There is need for developing risk models using ML for microvascular complications, especially neuropathy, in adult T1D patients in the US utilizing contemporary real-world data. Future studies should also evaluate how A1C variability versus a single A1C measure may affect a risk model’s performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nian完成签到 ,获得积分10
2秒前
4秒前
11完成签到,获得积分10
4秒前
安详砖家发布了新的文献求助10
4秒前
5秒前
EMMACao完成签到,获得积分10
5秒前
xky200125完成签到 ,获得积分10
6秒前
超级板凳完成签到,获得积分10
7秒前
rationality完成签到,获得积分10
7秒前
jojo完成签到 ,获得积分10
8秒前
Jay发布了新的文献求助10
9秒前
9秒前
zyn发布了新的文献求助10
9秒前
传奇3应助ei采纳,获得10
12秒前
7分运气完成签到,获得积分10
12秒前
MARIO发布了新的文献求助10
14秒前
小呆鹿完成签到,获得积分10
14秒前
天真的白凡完成签到 ,获得积分10
16秒前
YG完成签到,获得积分10
16秒前
16秒前
17秒前
QiJiLuLu完成签到,获得积分10
18秒前
无花果应助ATOM采纳,获得10
18秒前
Werner完成签到 ,获得积分10
18秒前
18秒前
19秒前
乐乐完成签到 ,获得积分10
19秒前
21秒前
初初见你发布了新的文献求助10
21秒前
Rui_Rui发布了新的文献求助10
22秒前
合适清完成签到,获得积分10
23秒前
自然幻竹完成签到,获得积分10
23秒前
渣渣凡完成签到,获得积分10
24秒前
automan发布了新的文献求助10
24秒前
25秒前
yang完成签到,获得积分10
26秒前
桑榆发布了新的文献求助10
27秒前
NexusExplorer应助LPP采纳,获得10
29秒前
香蕉觅云应助chiweiyoung采纳,获得10
29秒前
30秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848