PDB94 PREDICTIVE MODELS USING MACHINE LEARNING FOR MICROVASCULAR COMPLICATIONS IN PATIENTS WITH TYPE 1 DIABETES: A SYSTEMATIC LITERATURE REVIEW

医学 逻辑回归 肾病 视网膜病变 并发症 糖尿病 糖尿病性视网膜病变 1型糖尿病 决策树 系统回顾 内科学 梅德林 机器学习 计算机科学 内分泌学 法学 政治学
作者
Qi Xu,Sujit S. Sansgiry
出处
期刊:Value in Health [Elsevier BV]
卷期号:22: S590-S590
标识
DOI:10.1016/j.jval.2019.09.976
摘要

Microvascular complications can adversely impact disease prognosis in adult patients with type 1 diabetes (T1D). Early identification of patients at risk using predictive models through machine learning (ML) can help in T1D management. The objective of current review was to systematically identify and summarize published research on predictive models using ML for microvascular complications (diabetic nephropathy, retinopathy, and neuropathy) in adult T1D patients. Articles were identified from four prior reviews. An additional targeted review of English literature was undertaken in PubMed and Google Scholar from Jan 1, 2016 to May 31, 2019. Following concepts were used in combination in search queries: diabetes, microvascular complication, risk model, and ML. Studies analyzing image data, not developing predictive models, not focusing on an outcome of microvascular complication, not differentiating adult T1D patients, or letters, opinions, and posters were excluded. A total of 6 studies met the eligibility criteria. Four studies developed risk models in T1D patients, whereas two used type of diabetes as a predictor. Diabetic retinopathy, nephropathy and neuropathy were assessed in 3, 3, and 2 studies, respectively. Predictions were based on data from clinical trials (n=2, US:1, Europe:1), EHR (n=3, US:1, Europe:2) and cross-sectional questionnaires (n=1, Iran). Commonly used ML methods included classification and regression tree (CART, including random forest, n=3), support vector machines (n=2), logistic regression (n=2), and neural networks (n=1). Model performance was evaluated by c-statistics (n=3), accuracy (n=2) and confidence intervals (CIs, n=1). Common predictors across complications included age, gender, diabetes duration, BMI, blood pressure, lipid level, and mean or a single A1C value. There is need for developing risk models using ML for microvascular complications, especially neuropathy, in adult T1D patients in the US utilizing contemporary real-world data. Future studies should also evaluate how A1C variability versus a single A1C measure may affect a risk model’s performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许个愿吧关注了科研通微信公众号
刚刚
狂野东蒽完成签到,获得积分10
刚刚
快乐难敌发布了新的文献求助10
刚刚
芒果味猕猴桃完成签到,获得积分10
1秒前
共享精神应助甜甜圈采纳,获得10
1秒前
huofuman完成签到,获得积分10
2秒前
负责冰烟发布了新的文献求助10
2秒前
htt完成签到,获得积分10
2秒前
feitian201861发布了新的文献求助10
3秒前
3秒前
852应助听话的晓筠采纳,获得10
3秒前
3秒前
Ryan123发布了新的文献求助10
4秒前
dalian完成签到,获得积分10
4秒前
111完成签到,获得积分10
4秒前
青云完成签到,获得积分10
4秒前
CHEN发布了新的文献求助10
4秒前
ning完成签到,获得积分20
5秒前
xiaixax完成签到,获得积分10
5秒前
科研通AI2S应助zz采纳,获得10
5秒前
寒酥完成签到,获得积分10
5秒前
qinswzaiyu完成签到,获得积分10
6秒前
1459完成签到,获得积分10
6秒前
Miranda完成签到,获得积分10
6秒前
充电宝应助欢喜的凡采纳,获得10
7秒前
7秒前
852应助科研小白菜采纳,获得10
7秒前
study666完成签到,获得积分20
7秒前
Wonder完成签到,获得积分10
8秒前
ning发布了新的文献求助20
8秒前
8秒前
liyihua发布了新的文献求助10
8秒前
Lin完成签到 ,获得积分10
9秒前
科研通AI2S应助xinruru采纳,获得10
9秒前
zz完成签到,获得积分10
9秒前
田様应助畅快的紫烟采纳,获得10
10秒前
皖医梁朝伟完成签到 ,获得积分0
10秒前
諵十一完成签到,获得积分10
11秒前
常富育发布了新的文献求助10
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016449
求助须知:如何正确求助?哪些是违规求助? 3556606
关于积分的说明 11321734
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812434
邀请新用户注册赠送积分活动 887994
科研通“疑难数据库(出版商)”最低求助积分说明 812060