四棱樱桃
肝胰腺
生物
小龙虾
生物化学
打开阅读框
分子生物学
基因表达
基因
肽序列
渔业
作者
Donglei Wu,Qin-Xiong Rao,Lin Cheng,Weiwei Lv,Yunlong Zhao,Wei- Guo Song
标识
DOI:10.1016/j.jtherbio.2021.103122
摘要
Desaturase is one of the key enzymes in the unsaturated fatty acid synthesis pathway. Δ9 desaturase catalyzes the synthesis of oleic acid from stearic acid by introducing double bonds in the 9th and 10th carbon chains, thereby increasing the content of MUFAs in the body. In order to explore the main function of the Δ9 desaturase gene under low temperature stress, RACE-PCR technology was used in this study to clone the full-length sequence of the CqFAD9-like from the hepatopancreas of red claw crayfish, Cherax quadricarinatus. The full length of the sequence is 1236 bp, and the open reading frame is 1041 bp, encoding 346 amino acid residues. The 5 'UTR is 116 bp, the 3' UTR is 79 bp, and the 3 'UTR contains a PloyA tail. The predicted theoretical isoelectric point and molecular weight are 8.68 and 40.28 kDa, respectively. Homology analysis showed that the sequence had the highest similarity with FAD9 from crustaceans. The results of real-time PCR showed that the expression level of this gene was highest in the hepatopancreas, which was significantly higher than other tissues, followed by the ovaries, brain ganglion and stomach. At the same time, the expression of the CqFAD9-like in hepatopancreas of crayfish cultured at 25, 20, 15 and 9 °C for four weeks was detected. The results showed that expression of the FAD9 gene increased gradually with decreasing temperature, indicating that metabolic desaturation might play a regulatory role during cold stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI