Machine Learning-Guided Discovery of Underlying Decisive Factors and New Mechanisms for the Design of Nonprecious Metal Electrocatalysts

直觉 催化作用 计算机科学 生化工程 合理设计 氧还原 人工智能 机器学习 化学 材料科学 纳米技术 工程类 认知科学 有机化学 物理化学 心理学 电化学 电极
作者
Rui Ding,Yawen Chen,Pïng Chen,Ran Wang,Jiankang Wang,Yiqin Ding,Wenjuan Yin,Yide Liu,Jia Li,Jianguo Liu
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:11 (15): 9798-9808 被引量:55
标识
DOI:10.1021/acscatal.1c01473
摘要

Numerous previous studies have investigated how different synthesis parameters affect the chemical properties of catalysts and their performances. However, traditional trial and error optimization in comprehensive multiparameter spaces that is driven by chemical intuition may cause influencing factors to be artificially ignored. Hence, we introduce machine learning to provide insights by feature ranking based on data sets. Taking zeolite imidazole framework-derived oxygen reduction catalysts as an example, computing results reveal that pyridinic nitrogen species are strongly related to catalytic performance. Besides pyrolysis temperature, pyrolysis time, which has not been set as variable by the vast majority of studies, is discovered to be decisive at the synthesis level. Guided by these predictions, the insights of the algorithm are verified by control experiments. The characterization results and interpretable model reveal an ignored mechanism. Continuous processes that successively affect pyridinic species, including the loss of Zn–N species, formation of Fe–N species, and conversion into graphitic N species, resulted in a volcano-like relationship between the half-wave potential and the pyrolysis time. This work not only provides insights into catalyst design but also proves that machine learning has the ability to mine key factors and mechanisms concealed in complex experimental data to boost the optimization of energy materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靳佩发布了新的文献求助10
1秒前
CipherSage应助ZHAYUE采纳,获得10
2秒前
越啊发布了新的文献求助10
2秒前
111发布了新的文献求助10
4秒前
6秒前
白衣修身完成签到,获得积分10
6秒前
科研通AI5应助yoyo采纳,获得10
7秒前
哈尼酱完成签到,获得积分10
7秒前
8秒前
10秒前
11秒前
11秒前
宓之云完成签到,获得积分10
11秒前
Nolan发布了新的文献求助10
12秒前
12秒前
苗条向珊发布了新的文献求助10
13秒前
13秒前
眼睛大的诗云完成签到 ,获得积分10
15秒前
科研通AI5应助笙箫采纳,获得10
15秒前
15秒前
lio发布了新的文献求助10
16秒前
ZHAYUE发布了新的文献求助10
16秒前
16秒前
救驾来迟完成签到,获得积分10
17秒前
勤恳的板凳完成签到 ,获得积分10
17秒前
happyworld关注了科研通微信公众号
18秒前
小胡完成签到,获得积分10
18秒前
Kiki发布了新的文献求助10
19秒前
跳跳完成签到,获得积分20
19秒前
19秒前
滴答滴完成签到 ,获得积分10
20秒前
22秒前
22秒前
于归故城完成签到,获得积分10
22秒前
倪鱼发布了新的文献求助10
23秒前
24秒前
24秒前
ciccici发布了新的文献求助10
24秒前
ts完成签到,获得积分10
25秒前
wanci应助lio采纳,获得10
26秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120563
求助须知:如何正确求助?哪些是违规求助? 4325901
关于积分的说明 13478119
捐赠科研通 4159552
什么是DOI,文献DOI怎么找? 2279551
邀请新用户注册赠送积分活动 1281381
关于科研通互助平台的介绍 1220210