Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1−x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions

材料科学 铁电性 电介质 电场 相变 固溶体 凝聚态物理 相(物质) 衍射 极化(电化学) 光学 光电子学 物理化学 物理 化学 量子力学 冶金
作者
Ruiyi Jing,Leiyang Zhang,Qingyuan Hu,Denis Alikin,V. Ya. Shur,Xiaoyong Wei,Lin Zhang,Gang Liu,Haibo Zhang,Li Jin
出处
期刊:Journal of Materiomics [Elsevier BV]
卷期号:8 (2): 335-346 被引量:35
标识
DOI:10.1016/j.jmat.2021.09.002
摘要

Owing to the complex composition architecture of these solid solutions, some fundamental issues of the classical (1−x)Bi1/2Na1/2TiO-xBi1/2K1/2TiO3 (BNT-xBKT) binary system, such as details of phase evolution and optimal Na/K ratio associated with the highest strain responses, remain unresolved. In this work, we systematically investigated the phase evolution of the BNT-xBKT binary solid solution with x ranging from 0.12 to 0.24 using not only routine X-ray diffraction and weak-signal dielectric characterization, but also temperature-dependent polarization versus electric field (P-E) and current versus electric field (I-E) curves. Our results indicate an optimal Na/K ratio of 81/19 based on high-field polarization and electrostrain characterizations. As the temperature increased above 100 °C, the x = 0.19 composition produces ultrahigh electrostrains (> 0.5%) with high thermal stability. The ultrahigh and stable electrostrains were primarily due to the combined effect of electric-field-induced relaxor-to-ferroelectric phase transition and ferroelectric-to-relaxor diffuse phase transition during heating. More specifically, we revealed the relationship between phase evolution and electrostrain responses based on the characteristic temperatures determined by both weak-field dielectric and high-field ferroelectric/electromechanical property characterizations. This work not only clarifies the phase evolution in BNT-xBKT binary solid solution, but also paves the way for future strain enhancement through doping strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助美满的大象采纳,获得10
1秒前
1秒前
fqk完成签到,获得积分10
1秒前
优美的冰巧完成签到 ,获得积分10
2秒前
Lucas应助秦pale采纳,获得30
3秒前
pluto应助bio_qi采纳,获得10
5秒前
abc发布了新的文献求助10
6秒前
机灵一兰完成签到 ,获得积分10
10秒前
10秒前
英俊绿海完成签到 ,获得积分10
12秒前
12秒前
留胡子的藏鸟完成签到,获得积分10
13秒前
CodeCraft应助nino采纳,获得10
13秒前
蝈蝈完成签到,获得积分10
14秒前
万幸鹿发布了新的文献求助10
14秒前
xiahou发布了新的文献求助10
15秒前
英俊的铭应助巧克小花花采纳,获得10
15秒前
DDD3完成签到,获得积分10
16秒前
17秒前
FashionBoy应助完美的映秋采纳,获得10
18秒前
灵舒完成签到,获得积分10
18秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
121231233应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得30
19秒前
Rage_Wang应助科研通管家采纳,获得20
19秒前
cdercder应助科研通管家采纳,获得10
20秒前
121231233应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
cdercder应助科研通管家采纳,获得10
20秒前
云山万重应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
121231233应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
云山万重应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703