Infrared and Visible Image Object Detection via Focused Feature Enhancement and Cascaded Semantic Extension

计算机科学 卷积神经网络 人工智能 目标检测 模式识别(心理学) 特征(语言学) 计算机视觉 语言学 哲学
作者
Xiaowu Xiao,Bo Wang,Lingjuan Miao,Linhao Li,Zhiqiang Zhou,Jinlei Ma,Dandan Dong
出处
期刊:Remote Sensing [MDPI AG]
卷期号:13 (13): 2538-2538 被引量:10
标识
DOI:10.3390/rs13132538
摘要

Infrared and visible images (multi-sensor or multi-band images) have many complementary features which can effectively boost the performance of object detection. Recently, convolutional neural networks (CNNs) have seen frequent use to perform object detection in multi-band images. However, it is very difficult for CNNs to extract complementary features from infrared and visible images. In order to solve this problem, a difference maximum loss function is proposed in this paper. The loss function can guide the learning directions of two base CNNs and maximize the difference between features from the two base CNNs, so as to extract complementary and diverse features. In addition, we design a focused feature-enhancement module to make features in the shallow convolutional layer more significant. In this way, the detection performance of small objects can be effectively improved while not increasing the computational cost in the testing stage. Furthermore, since the actual receptive field is usually much smaller than the theoretical receptive field, the deep convolutional layer would not have sufficient semantic features for accurate detection of large objects. To overcome this drawback, a cascaded semantic extension module is added to the deep layer. Through simple multi-branch convolutional layers and dilated convolutions with different dilation rates, the cascaded semantic extension module can effectively enlarge the actual receptive field and increase the detection accuracy of large objects. We compare our detection network with five other state-of-the-art infrared and visible image object detection networks. Qualitative and quantitative experimental results prove the superiority of the proposed detection network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六一儿童节完成签到 ,获得积分10
刚刚
固的曼完成签到,获得积分10
1秒前
3秒前
微微发布了新的文献求助10
3秒前
3秒前
CL发布了新的文献求助10
4秒前
明理千雁发布了新的文献求助20
4秒前
4秒前
傲娇紫烟完成签到,获得积分10
4秒前
5秒前
Jasper应助帕克采纳,获得10
7秒前
cliche发布了新的文献求助30
8秒前
8秒前
8秒前
8秒前
9秒前
10秒前
hhhh发布了新的文献求助10
10秒前
结实的荷发布了新的文献求助10
11秒前
谨慎不二发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
SDQT发布了新的文献求助10
14秒前
Jenny发布了新的文献求助10
15秒前
脑洞疼应助丶氵一生里采纳,获得20
16秒前
ding应助asdadadad采纳,获得10
16秒前
认真科研发布了新的文献求助10
17秒前
个性的饼干关注了科研通微信公众号
17秒前
homeworkk发布了新的文献求助10
17秒前
19秒前
李秀钦关注了科研通微信公众号
19秒前
20秒前
自觉的芷蝶完成签到,获得积分10
20秒前
安静的慕凝完成签到,获得积分10
20秒前
不配.应助ZZZ采纳,获得20
21秒前
岁岁安完成签到,获得积分10
21秒前
Hh发布了新的文献求助10
22秒前
yq发布了新的文献求助10
23秒前
平淡夏云完成签到,获得积分10
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323