已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence-based opportunistic screening for the detection of arterial hypertension through ECG signals

医学 心脏病学 内科学 人工智能 计算机科学
作者
Eleni Angelaki,Georgios D. Barmparis,George E. Kochiadakis,Spyros Maragkoudakis,Eirini Savva,Emmanuel Kampanieris,S Kassotakis,Petros Kalomoirakis,Panos Vardas,G. P. Tsironis,Maria Marketou
出处
期刊:Journal of Hypertension [Lippincott Williams & Wilkins]
卷期号:40 (12): 2494-2501 被引量:1
标识
DOI:10.1097/hjh.0000000000003286
摘要

Hypertension is a major risk factor for cardiovascular disease (CVD), which often escapes the diagnosis or should be confirmed by several office visits. The ECG is one of the most widely used diagnostic tools and could be of paramount importance in patients' initial evaluation.We used machine learning techniques based on clinical parameters and features derived from the ECG, to detect hypertension in a population without CVD. We enrolled 1091 individuals who were classified as hypertensive or normotensive, and trained a Random Forest model, to detect the existence of hypertension. We then calculated the values for the Shapley additive explanations (SHAP), a sophisticated feature importance analysis, to interpret each feature's role in the Random Forest's results.Our Random Forest model was able to distinguish hypertensive from normotensive patients with accuracy 84.2%, specificity 78.0%, sensitivity 84.0% and area under the receiver-operating curve 0.89, using a decision threshold of 0.6. Age, BMI, BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV 3 ), R wave amplitude in aVL and BMI-modified Sokolow-Lyon voltage (BMI divided by SV 1 +RV 5 ), were the most important anthropometric and ECG-derived features in terms of the success of our model.Our machine learning algorithm is effective in the detection of hypertension in patients using ECG-derived and basic anthropometric criteria. Our findings open new horizon in the detection of many undiagnosed hypertensive individuals who have an increased CVD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酒渡完成签到,获得积分10
刚刚
1秒前
Shrimp完成签到 ,获得积分10
4秒前
喜悦的小土豆完成签到 ,获得积分10
4秒前
欣慰宛菡发布了新的文献求助10
5秒前
Tendency完成签到 ,获得积分10
5秒前
丁静完成签到 ,获得积分10
7秒前
9秒前
悟川完成签到 ,获得积分10
9秒前
朴实的小萱完成签到 ,获得积分10
19秒前
Mono完成签到 ,获得积分10
20秒前
20秒前
22秒前
SDNUDRUG完成签到,获得积分10
26秒前
28秒前
鳗鱼惋庭发布了新的文献求助10
29秒前
小鱼儿发布了新的文献求助30
32秒前
33秒前
乐乐应助年少丶采纳,获得10
33秒前
Owen应助不安太阳采纳,获得10
33秒前
任性唇膏发布了新的文献求助10
35秒前
豌豆发布了新的文献求助10
36秒前
养乐多敬你完成签到 ,获得积分10
38秒前
小蘑菇应助欢喜的怜菡采纳,获得10
39秒前
SciGPT应助悟空采纳,获得10
40秒前
大个应助深巷南离木采纳,获得10
41秒前
年少丶完成签到,获得积分10
41秒前
乐乐应助小鱼儿采纳,获得10
46秒前
科研通AI2S应助小鱼儿采纳,获得10
46秒前
46秒前
勤奋的立果完成签到 ,获得积分10
46秒前
欢喜的怜菡完成签到,获得积分10
47秒前
任性唇膏完成签到,获得积分10
48秒前
所所应助结实的幻竹采纳,获得10
48秒前
51秒前
52秒前
53秒前
上官若男应助Yuhaoo采纳,获得10
58秒前
59秒前
豌豆发布了新的文献求助10
59秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963143
求助须知:如何正确求助?哪些是违规求助? 3509015
关于积分的说明 11144838
捐赠科研通 3242023
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873118
科研通“疑难数据库(出版商)”最低求助积分说明 803621