Artificial intelligence-based opportunistic screening for the detection of arterial hypertension through ECG signals

医学 心脏病学 内科学 人工智能 计算机科学
作者
Eleni Angelaki,Georgios D. Barmparis,George E. Kochiadakis,Spyros Maragkoudakis,Eirini Savva,Emmanuel Kampanieris,S Kassotakis,Petros Kalomoirakis,Panos Vardas,G. P. Tsironis,Maria Marketou
出处
期刊:Journal of Hypertension [Lippincott Williams & Wilkins]
卷期号:40 (12): 2494-2501 被引量:1
标识
DOI:10.1097/hjh.0000000000003286
摘要

Hypertension is a major risk factor for cardiovascular disease (CVD), which often escapes the diagnosis or should be confirmed by several office visits. The ECG is one of the most widely used diagnostic tools and could be of paramount importance in patients' initial evaluation.We used machine learning techniques based on clinical parameters and features derived from the ECG, to detect hypertension in a population without CVD. We enrolled 1091 individuals who were classified as hypertensive or normotensive, and trained a Random Forest model, to detect the existence of hypertension. We then calculated the values for the Shapley additive explanations (SHAP), a sophisticated feature importance analysis, to interpret each feature's role in the Random Forest's results.Our Random Forest model was able to distinguish hypertensive from normotensive patients with accuracy 84.2%, specificity 78.0%, sensitivity 84.0% and area under the receiver-operating curve 0.89, using a decision threshold of 0.6. Age, BMI, BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV 3 ), R wave amplitude in aVL and BMI-modified Sokolow-Lyon voltage (BMI divided by SV 1 +RV 5 ), were the most important anthropometric and ECG-derived features in terms of the success of our model.Our machine learning algorithm is effective in the detection of hypertension in patients using ECG-derived and basic anthropometric criteria. Our findings open new horizon in the detection of many undiagnosed hypertensive individuals who have an increased CVD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿健完成签到,获得积分10
刚刚
王大敏发布了新的文献求助10
刚刚
天外来物关注了科研通微信公众号
1秒前
1秒前
玺白白发布了新的文献求助10
1秒前
善学以致用应助光亮映波采纳,获得10
1秒前
Owen应助Chao采纳,获得10
2秒前
NXZ完成签到,获得积分10
2秒前
yl发布了新的文献求助10
2秒前
3秒前
3秒前
小九发布了新的文献求助10
3秒前
绿叶小檗完成签到 ,获得积分10
3秒前
liuqi6767完成签到,获得积分20
4秒前
4秒前
量子星尘发布了新的文献求助50
4秒前
4秒前
4秒前
你好纠结伦完成签到,获得积分10
5秒前
6秒前
弱水完成签到,获得积分10
7秒前
7秒前
吴小苏发布了新的文献求助10
8秒前
8秒前
ypcsjj发布了新的文献求助10
8秒前
9秒前
浮游应助YJ888采纳,获得10
9秒前
Kaka完成签到,获得积分10
9秒前
9秒前
whh123完成签到 ,获得积分10
9秒前
jiaman1031完成签到,获得积分10
9秒前
sky同学发布了新的文献求助10
9秒前
wpybird发布了新的文献求助10
10秒前
氨基酸发布了新的文献求助10
10秒前
mwzz233完成签到,获得积分10
10秒前
10秒前
科研通AI6应助玺白白采纳,获得10
11秒前
Chao完成签到,获得积分10
12秒前
DandanHan0916发布了新的文献求助30
12秒前
666完成签到 ,获得积分10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559