Artificial intelligence-based opportunistic screening for the detection of arterial hypertension through ECG signals

医学 心脏病学 内科学 人工智能 计算机科学
作者
Eleni Angelaki,Georgios D. Barmparis,George E. Kochiadakis,Spyros Maragkoudakis,Eirini Savva,Emmanuel Kampanieris,S Kassotakis,Petros Kalomoirakis,Panos Vardas,G. P. Tsironis,Maria Marketou
出处
期刊:Journal of Hypertension [Ovid Technologies (Wolters Kluwer)]
卷期号:40 (12): 2494-2501 被引量:1
标识
DOI:10.1097/hjh.0000000000003286
摘要

Hypertension is a major risk factor for cardiovascular disease (CVD), which often escapes the diagnosis or should be confirmed by several office visits. The ECG is one of the most widely used diagnostic tools and could be of paramount importance in patients' initial evaluation.We used machine learning techniques based on clinical parameters and features derived from the ECG, to detect hypertension in a population without CVD. We enrolled 1091 individuals who were classified as hypertensive or normotensive, and trained a Random Forest model, to detect the existence of hypertension. We then calculated the values for the Shapley additive explanations (SHAP), a sophisticated feature importance analysis, to interpret each feature's role in the Random Forest's results.Our Random Forest model was able to distinguish hypertensive from normotensive patients with accuracy 84.2%, specificity 78.0%, sensitivity 84.0% and area under the receiver-operating curve 0.89, using a decision threshold of 0.6. Age, BMI, BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV 3 ), R wave amplitude in aVL and BMI-modified Sokolow-Lyon voltage (BMI divided by SV 1 +RV 5 ), were the most important anthropometric and ECG-derived features in terms of the success of our model.Our machine learning algorithm is effective in the detection of hypertension in patients using ECG-derived and basic anthropometric criteria. Our findings open new horizon in the detection of many undiagnosed hypertensive individuals who have an increased CVD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定碧玉完成签到 ,获得积分10
2秒前
huangqian完成签到,获得积分10
3秒前
含蓄的易蓉完成签到,获得积分20
12秒前
时尚的细菌完成签到,获得积分10
12秒前
义气蚂蚁完成签到,获得积分10
12秒前
称心的语梦完成签到,获得积分10
15秒前
月亮上的猫完成签到,获得积分10
16秒前
可夫司机完成签到 ,获得积分10
19秒前
宁万三完成签到 ,获得积分10
20秒前
asdasd完成签到 ,获得积分10
20秒前
20秒前
小白应助含蓄的易蓉采纳,获得30
21秒前
胖子完成签到,获得积分10
23秒前
jyu完成签到,获得积分10
24秒前
25秒前
whyzz完成签到 ,获得积分10
29秒前
Jocd完成签到,获得积分10
29秒前
十六发布了新的文献求助50
30秒前
zzz完成签到,获得积分10
32秒前
小超人到海底捉虫完成签到,获得积分10
33秒前
bb完成签到,获得积分10
33秒前
小刘小刘完成签到 ,获得积分10
33秒前
小背包完成签到 ,获得积分10
35秒前
大白包子李完成签到,获得积分10
37秒前
muzi完成签到,获得积分10
38秒前
zedhumble发布了新的文献求助10
38秒前
未晞完成签到,获得积分10
38秒前
zhang完成签到 ,获得积分10
38秒前
digger2023完成签到 ,获得积分10
39秒前
ES完成签到 ,获得积分10
39秒前
July完成签到,获得积分10
40秒前
十六完成签到,获得积分10
40秒前
42秒前
42秒前
Zhang完成签到,获得积分10
43秒前
Lucas应助土豪的白卉采纳,获得10
43秒前
43秒前
哎嘿应助科研通管家采纳,获得10
44秒前
哎嘿应助科研通管家采纳,获得10
44秒前
Raylihuang应助科研通管家采纳,获得10
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813358
关于积分的说明 7900144
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316594
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175