Artificial intelligence-based opportunistic screening for the detection of arterial hypertension through ECG signals

医学 心脏病学 内科学 人工智能 计算机科学
作者
Eleni Angelaki,Georgios D. Barmparis,George E. Kochiadakis,Spyros Maragkoudakis,Eirini Savva,Emmanuel Kampanieris,S Kassotakis,Petros Kalomoirakis,Panos Vardas,G. P. Tsironis,Maria Marketou
出处
期刊:Journal of Hypertension [Lippincott Williams & Wilkins]
卷期号:40 (12): 2494-2501 被引量:1
标识
DOI:10.1097/hjh.0000000000003286
摘要

Hypertension is a major risk factor for cardiovascular disease (CVD), which often escapes the diagnosis or should be confirmed by several office visits. The ECG is one of the most widely used diagnostic tools and could be of paramount importance in patients' initial evaluation.We used machine learning techniques based on clinical parameters and features derived from the ECG, to detect hypertension in a population without CVD. We enrolled 1091 individuals who were classified as hypertensive or normotensive, and trained a Random Forest model, to detect the existence of hypertension. We then calculated the values for the Shapley additive explanations (SHAP), a sophisticated feature importance analysis, to interpret each feature's role in the Random Forest's results.Our Random Forest model was able to distinguish hypertensive from normotensive patients with accuracy 84.2%, specificity 78.0%, sensitivity 84.0% and area under the receiver-operating curve 0.89, using a decision threshold of 0.6. Age, BMI, BMI-adjusted Cornell criteria (BMI multiplied by RaVL+SV 3 ), R wave amplitude in aVL and BMI-modified Sokolow-Lyon voltage (BMI divided by SV 1 +RV 5 ), were the most important anthropometric and ECG-derived features in terms of the success of our model.Our machine learning algorithm is effective in the detection of hypertension in patients using ECG-derived and basic anthropometric criteria. Our findings open new horizon in the detection of many undiagnosed hypertensive individuals who have an increased CVD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的寒荷完成签到,获得积分10
刚刚
刚刚
NexusExplorer应助buzenilei采纳,获得10
刚刚
刚刚
无限紫菜发布了新的文献求助10
2秒前
wanci应助河豚来辽采纳,获得10
2秒前
高大的立果完成签到,获得积分10
2秒前
lgq12697完成签到,获得积分0
3秒前
3秒前
yuky完成签到,获得积分10
4秒前
5秒前
5秒前
爆米花应助予初采纳,获得10
6秒前
6秒前
Hello应助1111采纳,获得10
7秒前
7秒前
腾腾腾发布了新的文献求助10
7秒前
梨梨完成签到,获得积分20
8秒前
8秒前
萌帆星完成签到 ,获得积分10
9秒前
杨杨001完成签到,获得积分10
9秒前
小孟完成签到,获得积分10
9秒前
Ting发布了新的文献求助10
9秒前
10秒前
11秒前
椿萱并茂发布了新的文献求助10
11秒前
万能图书馆应助刘shuchang采纳,获得10
11秒前
11秒前
11秒前
ding应助不想学习采纳,获得10
13秒前
科研通AI6应助能干的盼兰采纳,获得10
13秒前
14秒前
nnnnn发布了新的文献求助10
14秒前
Alma完成签到,获得积分10
14秒前
雨歌发布了新的文献求助10
15秒前
15秒前
15秒前
慢慢完成签到,获得积分10
16秒前
Criminology34应助活力的思雁采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Weekly Somapacitan is Effective and Well-Tolerated in Children with Idiopathic Short Stature: Randomised Phase 3 Trial 600
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016348
求助须知:如何正确求助?哪些是违规求助? 4256394
关于积分的说明 13264643
捐赠科研通 4060429
什么是DOI,文献DOI怎么找? 2220848
邀请新用户注册赠送积分活动 1230087
关于科研通互助平台的介绍 1152714