聚酮
酰基转移酶
蛋白质工程
聚酮合酶
共同进化
合成生物学
计算生物学
生物
生物化学
酶
进化生物学
生物合成
作者
Mathijs F. J. Mabesoone,Stefan Leopold‐Messer,Hannah A. Minas,Clara Chepkirui,Pornsuda Chawengrum,Silke Reiter,Roy A. Meoded,Sarah Wolf,Ferdinand Genz,Nancy Magnus,Birgit Piechulla,Allison S. Walker,Jörn Piel
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2024-03-21
卷期号:383 (6689): 1312-1317
被引量:11
标识
DOI:10.1126/science.adj7621
摘要
Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis -acyltransferase ( cis -AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans -AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans -AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.
科研通智能强力驱动
Strongly Powered by AbleSci AI