Advances in physical vapor deposited silicon/carbon based anode materials for Li-ion batteries

阳极 物理气相沉积 薄膜 碳纤维 材料科学 纳米复合材料 锂(药物) 化学气相沉积 纳米技术 电化学 光电子学 化学 复合材料 电极 物理化学 内分泌学 复合数 医学
作者
Ghizlane El Omari,Khadija El Kindoussy,Mohamed Aqil,Mouad Dahbi,Jones Alami,M. Makha
出处
期刊:Heliyon [Elsevier]
卷期号:10 (9): e30431-e30431 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e30431
摘要

This paper explores the latest developments in physical vapor deposition (PVD) techniques for fabricating silicon-carbon (Si/C) based thin films as anodes of Lithium-Ion batteries (Li-ion). Properties of Si/C based materials, such as high thermal stability, electrical conductivity and mechanical strength, have addressed the critical challenges associated with the use silicon as anode material for LiBs, including as volume expansion during lithiation, structural stability and electrode degradation.The review article aims to provide recent advances in the use of Si/C-based thin film materials deposited via PVD processes as anodes for LiBs. PVD deposition processes provide numerous benefits including the precise control over the structure, thickness, morphology, as well as the design of deposited thin-film materials, and this article provides an in-depth analysis on the design and synthesis of Si/C thin films, as well as its electrochemical performance and stability when used as anode for LiBs.The primary aim of this paper is to underscore the advantages provided by PVD processes in overcoming challenges associated with using pure silicon as anode material for LiBs, or in improving the electrochemical performance of Si/C-based anode materials through the design of several Si/C films, covering both multilayer and nanocomposite Si/C film configurations outlined in sections II, III, respectively. Insights into the mechanisms governing lithium-ion insertion/extraction processes within the Si/C matrix are provided, offering an understanding of the material's behavior during battery cycling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyc完成签到,获得积分20
1秒前
2秒前
keyantang完成签到,获得积分10
3秒前
桃桃子发布了新的文献求助10
3秒前
4秒前
张子扬发布了新的文献求助10
7秒前
啦啦啦完成签到,获得积分10
8秒前
桃桃子完成签到,获得积分10
9秒前
上官若男应助momo采纳,获得10
11秒前
12秒前
12秒前
橘朵方差完成签到,获得积分10
13秒前
CipherSage应助lala采纳,获得10
13秒前
raolixiang完成签到,获得积分10
15秒前
16秒前
HEIKU应助医路通行采纳,获得10
16秒前
小蘑菇应助Y123采纳,获得10
16秒前
我是老大应助李昕123采纳,获得10
18秒前
19秒前
积极彩虹完成签到,获得积分10
19秒前
清脆的乌冬面完成签到,获得积分10
21秒前
冻冻也完成签到,获得积分10
22秒前
22秒前
任性柜子完成签到 ,获得积分10
23秒前
23秒前
万能图书馆应助艾米尼采纳,获得20
23秒前
鹿三德完成签到,获得积分20
24秒前
lala完成签到,获得积分20
25秒前
25秒前
26秒前
sdhgd发布了新的文献求助100
26秒前
钱俊发布了新的文献求助10
28秒前
29秒前
Y123发布了新的文献求助10
31秒前
32秒前
33秒前
王大壮完成签到,获得积分20
33秒前
33秒前
33秒前
33秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706