亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

[Segmentation and accuracy validation of mandibular molar and pulp cavity on cone-beam CT images by U-net neural network].

基本事实 分割 锥束ct 人工智能 计算机科学 预处理器 人工神经网络 臼齿 试验装置 卷积神经网络 口腔正畸科 模式识别(心理学) 牙科 数学 医学 计算机断层摄影术 放射科
作者
Xiang Lin,Yujie Fu,Gen-Qiang Ren,Jia-Huan Wen,Yufei Chen,Qi Zhang
出处
期刊:PubMed 卷期号:31 (5): 454-459 被引量:2
链接
标识
摘要

To realize the automatic segmentation of mandibular molar and pulp cavity on cone-beam CT (CBCT) images by U-net convolutional neural network, and to use the 3D models reconstructed by Micro-CT data as the ground truth to validate its accuracy. METHODS: Twenty groups of small field of view(FOV) CBCT data containing complete mandibular molars were collected from the Department of Radiology, Affiliated Stomatology Hospital of Tongji University. After preprocessing, an endodontic specialist labeled teeth and pulp cavities by MITK Workbench software. These data were used as the training set for training U-net neural network. In addition, five mandibular molars and corresponding small FOV CBCT data were collected. These five CBCT were processed in the same way and used as the testing set. Then, teeth and pulp cavities on CBCT images of the testing set were segmented and reconstructed by U-net neural network and the same specialist. The isolated teeth were scanned by a Micro-CT machine after preprocessing and the results were reconstructed to 3D models, which were used as the ground truth. Then the 3D models reconstructed by the specialist's labeling, U-net network segmentation results, and the ground truth in the testing set were compared. Dice similarity coefficient(DSC), average symmetric surface distance (ASSD), Hausdorff distance (HD), and morphological analysis were used to evaluate the results. SPSS 20.0 software package was used for statistical analysis.Compared with the ground truth, the segmentation accuracy of the U-net neural network measured by DSC, ASSD, and AHD was (95.30±1.01)%, (0.11±0.02) mm, and (1.05±0.31) mm in teeth and (81.21±2.27)%, (0.15±0.05) mm, and (3.29±1.85) mm in the pulp cavity, respectively. Morphological analysis results showed that the U-net network segmentation results were similar to the ground truth in tooth and pulp chamber. As for the segmentation results of root canals, only thick root canals could be segmented rather than the thin root canals, such as the canals in the apical third and lateral root canals.Under the experimental conditions, the U-net neural network trained by the specialist's labeling realized the automatic and accurate segmentation of mandibular molar and their pulp chamber on CBCT images. For the segmentation of root canals, the results need to be further improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
星辰大海应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
星辰大海应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
赘婿应助科研通管家采纳,获得10
46秒前
Imran完成签到,获得积分10
48秒前
爱思考的小笨笨完成签到,获得积分10
53秒前
梅子黄时雨完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6.1应助993494543采纳,获得10
2分钟前
2分钟前
优美的莹芝完成签到,获得积分10
2分钟前
科研通AI2S应助信陵君无忌采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
古古怪界丶黑大帅完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
993494543发布了新的文献求助10
4分钟前
993494543完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
爆米花应助科研通管家采纳,获得30
4分钟前
4分钟前
4分钟前
eeevaxxx完成签到 ,获得积分10
4分钟前
852应助安青兰采纳,获得10
5分钟前
5分钟前
5分钟前
安青兰发布了新的文献求助10
5分钟前
5分钟前
Feng完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764374
求助须知:如何正确求助?哪些是违规求助? 5551219
关于积分的说明 15406175
捐赠科研通 4899585
什么是DOI,文献DOI怎么找? 2635809
邀请新用户注册赠送积分活动 1583978
关于科研通互助平台的介绍 1539134