[Segmentation and accuracy validation of mandibular molar and pulp cavity on cone-beam CT images by U-net neural network].

基本事实 分割 锥束ct 人工智能 计算机科学 预处理器 人工神经网络 臼齿 试验装置 卷积神经网络 口腔正畸科 模式识别(心理学) 牙科 数学 医学 计算机断层摄影术 放射科
作者
Xiang Lin,Yujie Fu,Gen-Qiang Ren,Jia-Huan Wen,Yufei Chen,Qi Zhang
出处
期刊:PubMed 卷期号:31 (5): 454-459 被引量:2
链接
标识
摘要

To realize the automatic segmentation of mandibular molar and pulp cavity on cone-beam CT (CBCT) images by U-net convolutional neural network, and to use the 3D models reconstructed by Micro-CT data as the ground truth to validate its accuracy. METHODS: Twenty groups of small field of view(FOV) CBCT data containing complete mandibular molars were collected from the Department of Radiology, Affiliated Stomatology Hospital of Tongji University. After preprocessing, an endodontic specialist labeled teeth and pulp cavities by MITK Workbench software. These data were used as the training set for training U-net neural network. In addition, five mandibular molars and corresponding small FOV CBCT data were collected. These five CBCT were processed in the same way and used as the testing set. Then, teeth and pulp cavities on CBCT images of the testing set were segmented and reconstructed by U-net neural network and the same specialist. The isolated teeth were scanned by a Micro-CT machine after preprocessing and the results were reconstructed to 3D models, which were used as the ground truth. Then the 3D models reconstructed by the specialist's labeling, U-net network segmentation results, and the ground truth in the testing set were compared. Dice similarity coefficient(DSC), average symmetric surface distance (ASSD), Hausdorff distance (HD), and morphological analysis were used to evaluate the results. SPSS 20.0 software package was used for statistical analysis.Compared with the ground truth, the segmentation accuracy of the U-net neural network measured by DSC, ASSD, and AHD was (95.30±1.01)%, (0.11±0.02) mm, and (1.05±0.31) mm in teeth and (81.21±2.27)%, (0.15±0.05) mm, and (3.29±1.85) mm in the pulp cavity, respectively. Morphological analysis results showed that the U-net network segmentation results were similar to the ground truth in tooth and pulp chamber. As for the segmentation results of root canals, only thick root canals could be segmented rather than the thin root canals, such as the canals in the apical third and lateral root canals.Under the experimental conditions, the U-net neural network trained by the specialist's labeling realized the automatic and accurate segmentation of mandibular molar and their pulp chamber on CBCT images. For the segmentation of root canals, the results need to be further improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Achen发布了新的文献求助10
刚刚
MM发布了新的文献求助10
1秒前
1秒前
李爱国应助风趣的觅山采纳,获得10
1秒前
硕小牛完成签到,获得积分10
1秒前
guangshuang发布了新的文献求助10
1秒前
LL完成签到,获得积分10
2秒前
QQ发布了新的文献求助10
2秒前
2秒前
hongdongxiang发布了新的文献求助30
3秒前
友好慕卉发布了新的文献求助10
3秒前
CipherSage应助乐观的小土豆采纳,获得10
4秒前
justin完成签到,获得积分10
4秒前
充电宝应助拼搏的梦槐采纳,获得10
4秒前
YY发布了新的文献求助10
5秒前
yiqiu完成签到,获得积分10
5秒前
独孤幻月96应助Master_Ye采纳,获得10
5秒前
5秒前
pluto应助紫罗兰花海采纳,获得10
6秒前
6秒前
justin发布了新的文献求助10
6秒前
MH完成签到,获得积分10
6秒前
7秒前
无言已对完成签到,获得积分10
7秒前
CipherSage应助徐昊雯采纳,获得10
8秒前
西瓜发布了新的文献求助10
8秒前
Owen应助舒心的凝莲采纳,获得10
9秒前
mhq发布了新的文献求助50
9秒前
9秒前
YZZ完成签到,获得积分10
10秒前
10秒前
水木完成签到,获得积分10
10秒前
thuuu发布了新的文献求助10
10秒前
无言已对发布了新的文献求助10
10秒前
深情安青应助疯狂的麦咭采纳,获得10
11秒前
田様应助小小怪下士采纳,获得10
11秒前
11秒前
动人的雁枫完成签到 ,获得积分10
11秒前
情怀应助Christine采纳,获得30
13秒前
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646