已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

[Segmentation and accuracy validation of mandibular molar and pulp cavity on cone-beam CT images by U-net neural network].

基本事实 分割 锥束ct 人工智能 计算机科学 预处理器 人工神经网络 臼齿 试验装置 卷积神经网络 口腔正畸科 模式识别(心理学) 牙科 数学 医学 计算机断层摄影术 放射科
作者
Xiang Lin,Yujie Fu,Gen-Qiang Ren,Jia-Huan Wen,Yufei Chen,Qi Zhang
出处
期刊:PubMed 卷期号:31 (5): 454-459 被引量:2
链接
标识
摘要

To realize the automatic segmentation of mandibular molar and pulp cavity on cone-beam CT (CBCT) images by U-net convolutional neural network, and to use the 3D models reconstructed by Micro-CT data as the ground truth to validate its accuracy. METHODS: Twenty groups of small field of view(FOV) CBCT data containing complete mandibular molars were collected from the Department of Radiology, Affiliated Stomatology Hospital of Tongji University. After preprocessing, an endodontic specialist labeled teeth and pulp cavities by MITK Workbench software. These data were used as the training set for training U-net neural network. In addition, five mandibular molars and corresponding small FOV CBCT data were collected. These five CBCT were processed in the same way and used as the testing set. Then, teeth and pulp cavities on CBCT images of the testing set were segmented and reconstructed by U-net neural network and the same specialist. The isolated teeth were scanned by a Micro-CT machine after preprocessing and the results were reconstructed to 3D models, which were used as the ground truth. Then the 3D models reconstructed by the specialist's labeling, U-net network segmentation results, and the ground truth in the testing set were compared. Dice similarity coefficient(DSC), average symmetric surface distance (ASSD), Hausdorff distance (HD), and morphological analysis were used to evaluate the results. SPSS 20.0 software package was used for statistical analysis.Compared with the ground truth, the segmentation accuracy of the U-net neural network measured by DSC, ASSD, and AHD was (95.30±1.01)%, (0.11±0.02) mm, and (1.05±0.31) mm in teeth and (81.21±2.27)%, (0.15±0.05) mm, and (3.29±1.85) mm in the pulp cavity, respectively. Morphological analysis results showed that the U-net network segmentation results were similar to the ground truth in tooth and pulp chamber. As for the segmentation results of root canals, only thick root canals could be segmented rather than the thin root canals, such as the canals in the apical third and lateral root canals.Under the experimental conditions, the U-net neural network trained by the specialist's labeling realized the automatic and accurate segmentation of mandibular molar and their pulp chamber on CBCT images. For the segmentation of root canals, the results need to be further improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助乐观水桃采纳,获得10
1秒前
Charon发布了新的文献求助10
1秒前
因几完成签到 ,获得积分10
3秒前
6秒前
普通用户30号完成签到 ,获得积分10
9秒前
fcc完成签到 ,获得积分10
9秒前
BetterH完成签到 ,获得积分10
9秒前
anthea完成签到 ,获得积分10
9秒前
高高菠萝完成签到 ,获得积分10
10秒前
一种信仰完成签到 ,获得积分10
11秒前
12秒前
again完成签到 ,获得积分10
15秒前
青春梦完成签到 ,获得积分10
17秒前
鲸鱼发布了新的文献求助10
17秒前
小杨完成签到,获得积分10
19秒前
大个应助Charon采纳,获得10
22秒前
洞两完成签到,获得积分10
24秒前
李爱国应助Chi_bio采纳,获得30
24秒前
周新哲完成签到 ,获得积分10
24秒前
汉堡包应助神奇红桃三采纳,获得10
26秒前
Yuki完成签到 ,获得积分10
27秒前
Beast666完成签到 ,获得积分10
28秒前
研友_VZG7GZ应助健康的襄采纳,获得10
28秒前
viviji发布了新的文献求助10
29秒前
羁鸟应助魔幻的外套采纳,获得10
30秒前
潮鸣完成签到 ,获得积分10
33秒前
BCKT完成签到,获得积分10
33秒前
王海海完成签到 ,获得积分10
35秒前
35秒前
36秒前
39秒前
李容容发布了新的文献求助10
42秒前
所所应助viviji采纳,获得10
43秒前
甜甜的以筠完成签到 ,获得积分10
44秒前
小宋完成签到,获得积分10
44秒前
44秒前
LPPQBB完成签到,获得积分10
48秒前
愿理发布了新的文献求助10
49秒前
53秒前
student完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290918
求助须知:如何正确求助?哪些是违规求助? 4442132
关于积分的说明 13829355
捐赠科研通 4325006
什么是DOI,文献DOI怎么找? 2373909
邀请新用户注册赠送积分活动 1369322
关于科研通互助平台的介绍 1333409