[Segmentation and accuracy validation of mandibular molar and pulp cavity on cone-beam CT images by U-net neural network].

基本事实 分割 锥束ct 人工智能 计算机科学 预处理器 人工神经网络 臼齿 试验装置 卷积神经网络 口腔正畸科 模式识别(心理学) 牙科 数学 医学 计算机断层摄影术 放射科
作者
Xiang Lin,Yujie Fu,Gen-Qiang Ren,Jia-Huan Wen,Yufei Chen,Qi Zhang
出处
期刊:PubMed 卷期号:31 (5): 454-459
链接
标识
摘要

To realize the automatic segmentation of mandibular molar and pulp cavity on cone-beam CT (CBCT) images by U-net convolutional neural network, and to use the 3D models reconstructed by Micro-CT data as the ground truth to validate its accuracy. METHODS: Twenty groups of small field of view(FOV) CBCT data containing complete mandibular molars were collected from the Department of Radiology, Affiliated Stomatology Hospital of Tongji University. After preprocessing, an endodontic specialist labeled teeth and pulp cavities by MITK Workbench software. These data were used as the training set for training U-net neural network. In addition, five mandibular molars and corresponding small FOV CBCT data were collected. These five CBCT were processed in the same way and used as the testing set. Then, teeth and pulp cavities on CBCT images of the testing set were segmented and reconstructed by U-net neural network and the same specialist. The isolated teeth were scanned by a Micro-CT machine after preprocessing and the results were reconstructed to 3D models, which were used as the ground truth. Then the 3D models reconstructed by the specialist's labeling, U-net network segmentation results, and the ground truth in the testing set were compared. Dice similarity coefficient(DSC), average symmetric surface distance (ASSD), Hausdorff distance (HD), and morphological analysis were used to evaluate the results. SPSS 20.0 software package was used for statistical analysis.Compared with the ground truth, the segmentation accuracy of the U-net neural network measured by DSC, ASSD, and AHD was (95.30±1.01)%, (0.11±0.02) mm, and (1.05±0.31) mm in teeth and (81.21±2.27)%, (0.15±0.05) mm, and (3.29±1.85) mm in the pulp cavity, respectively. Morphological analysis results showed that the U-net network segmentation results were similar to the ground truth in tooth and pulp chamber. As for the segmentation results of root canals, only thick root canals could be segmented rather than the thin root canals, such as the canals in the apical third and lateral root canals.Under the experimental conditions, the U-net neural network trained by the specialist's labeling realized the automatic and accurate segmentation of mandibular molar and their pulp chamber on CBCT images. For the segmentation of root canals, the results need to be further improved.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助Alaskan采纳,获得10
1秒前
1秒前
1秒前
穆紫应助Rita采纳,获得10
1秒前
1秒前
2秒前
2秒前
cc应助英勇的鼠标采纳,获得10
3秒前
一二三发布了新的文献求助10
4秒前
搜集达人应助鲤鱼大炮采纳,获得10
6秒前
6秒前
jianjiao发布了新的文献求助20
6秒前
饺子发布了新的文献求助10
7秒前
you完成签到,获得积分10
7秒前
十月完成签到,获得积分10
8秒前
8秒前
汉堡包应助世界和平采纳,获得30
9秒前
周凡淇发布了新的文献求助30
10秒前
10秒前
10秒前
追寻的怜容完成签到,获得积分10
11秒前
寒冷妙梦发布了新的文献求助10
11秒前
hahaha发布了新的文献求助10
11秒前
共享精神应助周俊俊采纳,获得10
12秒前
爆米花应助南烟采纳,获得10
12秒前
13秒前
852应助啦啦啦大大大雷采纳,获得10
15秒前
田様应助多情的涵易采纳,获得10
16秒前
16秒前
16秒前
茜134发布了新的文献求助20
16秒前
华仔应助哈好好哈哈好采纳,获得10
17秒前
Hello应助一二三采纳,获得10
17秒前
穆紫应助无辜忆寒采纳,获得10
17秒前
饺子完成签到,获得积分10
18秒前
冷傲的元容关注了科研通微信公众号
18秒前
19秒前
太清完成签到,获得积分10
19秒前
19秒前
sxw2088发布了新的文献求助10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328