Boost-Up Efficiency of Defective Solar Panel Detection With Pre-Trained Attention Recycling

人工智能 计算机科学 特征提取 自动化 特征(语言学) 机器学习 太阳能 深度学习 机制(生物学) 工程类 机械工程 语言学 哲学 电气工程 认识论
作者
YeongHyeon Park,Myung Jin Kim,Uju Gim,Juneho Yi
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:59 (3): 3110-3120 被引量:1
标识
DOI:10.1109/tia.2023.3255227
摘要

Methods that enable the visual inspection of solar panels are currently in demand, as a huge number of solar panels are now being deployed as a sustainable energy source. One of the solutions for inspection automation is an end-to-end deep learning framework, but this is not recommended for this problem because such a framework requires not only powerful computational resources, but also a large-scale class-balanced dataset. In this study, we present a cost-effective solar panel defect detection method. We emphasize the spatial feature of defects by utilizing an attention map that is generated by a pre-trained attention mechanism that can give attention on stroke ends, gathering, and bends. We define and extract 13 statistical features from the attention map, and then feed them into conventional machine learning model. Therefore, we no longer require energy depleting models such as end-to-end neural classifiers to discriminate between non-defective and defective panels. Five conventional machine learning models and one state-of-the-art (SOTA) deep learning model—i. e., EfficientNet—are used to generalize the experimental results. The results of the comparative experiments indicate that our approach, which includes attention mechanism recycling and statistical feature extraction, is guaranteed to provide cost-effective defect detection in general with performance that is competitive with that of recent SOTA. In future research, we expect that our approach can be adopted in other defect detection tasks such as steel or film manufacturing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WYX发布了新的文献求助10
1秒前
路口完成签到,获得积分10
2秒前
党弛完成签到,获得积分10
2秒前
火山暴涨球技完成签到,获得积分10
3秒前
翟煜完成签到 ,获得积分10
3秒前
科研通AI5应助忘川采纳,获得10
4秒前
天明完成签到 ,获得积分10
4秒前
4秒前
务实水蓝完成签到 ,获得积分10
4秒前
SciGPT应助滕鑫磊采纳,获得10
6秒前
6秒前
9秒前
9秒前
10秒前
qwns完成签到,获得积分10
11秒前
科研通AI5应助sun采纳,获得10
12秒前
果车发布了新的文献求助10
12秒前
科研通AI2S应助嘿嘿采纳,获得10
12秒前
泊十四发布了新的文献求助10
13秒前
福娃哇发布了新的文献求助10
13秒前
风趣的从梦完成签到,获得积分10
14秒前
小白完成签到,获得积分10
15秒前
15秒前
科研通AI5应助123采纳,获得10
15秒前
16秒前
赘婿应助Serein采纳,获得10
19秒前
20秒前
可乐发布了新的文献求助10
21秒前
夏xia完成签到,获得积分10
21秒前
CipherSage应助MXX采纳,获得10
25秒前
小二郎应助果车采纳,获得10
27秒前
27秒前
可乐完成签到,获得积分10
28秒前
yyan完成签到 ,获得积分10
29秒前
酷波er应助xyh采纳,获得10
29秒前
科研通AI5应助luojh03采纳,获得10
29秒前
31秒前
32秒前
lily88发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761429
求助须知:如何正确求助?哪些是违规求助? 3305356
关于积分的说明 10133409
捐赠科研通 3019247
什么是DOI,文献DOI怎么找? 1658075
邀请新用户注册赠送积分活动 791820
科研通“疑难数据库(出版商)”最低求助积分说明 754655