Enhancing vascular network visualization in 3D photoacoustic imaging: in vivo experiments with a vasculature filter

可视化 光学 生物医学中的光声成像 体内 衰减系数 材料科学 临床前影像学 滤波器(信号处理) 生物医学工程 计算机科学 计算机视觉 人工智能 物理 医学 生物 生物技术
作者
Mohammadreza Amjadian,Seyed Masood Mostafavi,Jiangbo Chen,Jingyi Zhu,Jun Ma,Zhengtang Luo,Lidai Wang
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (15): 25533-25533
标识
DOI:10.1364/oe.513911
摘要

Filter-based vessel enhancement algorithms facilitate the extraction of vascular networks from medical images. Traditional filter-based algorithms struggle with high noise levels in images with false vessel extraction, and a low standard deviation (σ) value may introduce gaps at the centers of wide vessels. In this paper, a robust technique with less sensitivity to parameter tuning and better noise suppression than other filter-based methods for two-dimensional and three-dimensional images is implemented. In this study, we propose a filter that employs non-local means (NLM) for denoising, applying the vesselness function to suppress blob-like structures and filling the gaps in wide vessels without compromising edge quality or details. Acoustic resolution photoacoustic microscopy (AR-PAM) systems generate high-resolution volumetric photoacoustic images, but their vascular structure imaging suffers from out-of-focal signal-to-noise ratio (SNR) and lateral resolution loss. Implementing a synthetic aperture focusing technique (SAFT) based on a virtual detector (VD) improves out-of-focal region resolution and SNR. Combining the proposed filter with the SAFT algorithm enhances vascular structural imaging in AR-PAM systems. The proposed method is robust and applicable for animal tissues with less error of vasculature structure extraction in comparison to traditional fliter-based methods like Frangi and Sato filter. Also, the method is faster in terms of processing speed and less tuning parameters. We applied the method to a digital phantom to validate our approach and conducted in vivo experiments to demonstrate its superiority for real volumetric tissue imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Min完成签到,获得积分10
1秒前
楠阿楠完成签到 ,获得积分10
1秒前
子车茗应助哇哈哈哈哈哈采纳,获得30
1秒前
1秒前
头哥应助MiManchi采纳,获得10
2秒前
李健应助zz采纳,获得10
2秒前
2秒前
2秒前
重楼远志完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
2秒前
Young应助时间采纳,获得10
3秒前
3秒前
小巧吐司完成签到,获得积分10
3秒前
4秒前
IceShock完成签到,获得积分10
4秒前
白蒲桃完成签到 ,获得积分10
4秒前
炙热面包完成签到,获得积分20
4秒前
大胆的如凡完成签到,获得积分10
5秒前
6秒前
你怎么睡得着觉完成签到,获得积分10
6秒前
可爱的函函应助Mrsummer采纳,获得10
6秒前
7秒前
Atopos发布了新的文献求助10
7秒前
ZFY关闭了ZFY文献求助
7秒前
7秒前
支安白发布了新的文献求助10
8秒前
8秒前
炙热面包发布了新的文献求助20
8秒前
8秒前
苏silence发布了新的文献求助10
8秒前
张锐斌完成签到,获得积分10
8秒前
594778089完成签到,获得积分20
8秒前
豆包完成签到,获得积分10
8秒前
shan完成签到,获得积分10
9秒前
Owen应助缥缈的青旋采纳,获得10
9秒前
dadabad完成签到 ,获得积分10
9秒前
凝若霜晨发布了新的文献求助10
9秒前
如常完成签到,获得积分10
11秒前
要奋斗的小番茄完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005