Immunoinformatics-driven In silico vaccine design for Nipah virus (NPV): Integrating machine learning and computational epitope prediction

表位 免疫系统 反向疫苗学 抗原 生物信息学 病毒学 病毒 生物 计算生物学 免疫学 遗传学 基因
作者
Muhammad Shahab,Muhammad Waleed Iqbal,Abbas Ahmad,Fahad M. Alshabrmi,Dong‐Qing Wei,Abbas Khan,Guojun Zheng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108056-108056 被引量:3
标识
DOI:10.1016/j.compbiomed.2024.108056
摘要

The Nipah virus (NPV) is a highly lethal virus, known for its significant fatality rate. The virus initially originated in Malaysia in 1998 and later led to outbreaks in nearby countries such as Bangladesh, Singapore, and India. Currently, there are no specific vaccines available for this virus. The current work employed the reverse vaccinology method to conduct a comprehensive analysis of the entire proteome of the NPV virus. The aim was to identify and choose the most promising antigenic proteins that could serve as potential candidates for vaccine development. We have also designed B and T cell epitopes-based vaccine candidate using immunoinformatics approach. We have identified a total of 5 novel Cytotoxic T Lymphocytes (CTL), 5 Helper T Lymphocytes (HTL), and 6 linear B-cell potential antigenic epitopes which are novel and can be used for further vaccine development against Nipah virus. Then we performed the physicochemical properties, antigenic, immunogenic and allergenicity prediction of the designed vaccine candidate against NPV. Further, Computational analysis indicated that these epitopes possessed highly antigenic properties and were capable of interacting with immune receptors. The designed vaccine were then docked with the human immune receptors, namely TLR-2 and TLR-4 showed robust interaction with the immune receptor. Molecular dynamics simulations demonstrated robust binding and good dynamics. After numerous dosages at varied intervals, computational immune response modeling showed that the immunogenic construct might elicit a significant immune response. In conclusion, the immunogenic construct shows promise in providing protection against NPV, However, further experimental validation is required before moving to clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左悬月完成签到,获得积分10
刚刚
zym发布了新的文献求助10
刚刚
刚刚
少云六到十完成签到,获得积分10
1秒前
iNk应助瑕灬采纳,获得20
1秒前
2秒前
3秒前
左悬月发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
T-SL完成签到,获得积分10
8秒前
JL完成签到,获得积分10
9秒前
wanci应助renxiaoting采纳,获得10
9秒前
Frost发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
sunnyAM3发布了新的文献求助10
15秒前
15秒前
16秒前
渭水飞熊发布了新的文献求助10
16秒前
16秒前
17秒前
合适秋珊发布了新的文献求助10
17秒前
善学以致用应助听风语采纳,获得10
17秒前
JTB完成签到,获得积分10
18秒前
哎呀妈呀发布了新的文献求助10
19秒前
JohnsonTse发布了新的文献求助10
19秒前
19秒前
19秒前
领导范儿应助yanziwu94采纳,获得10
19秒前
科研通AI5应助平淡的寒风采纳,获得10
21秒前
22秒前
22秒前
pig120完成签到,获得积分10
22秒前
啦啦啦发布了新的文献求助10
22秒前
nwds发布了新的文献求助10
24秒前
JTB发布了新的文献求助10
25秒前
CodeCraft应助xiu-er采纳,获得10
25秒前
高分求助中
All the Birds of the World 2000
Soviet Aid to the Third World: The Facts and Figures 500
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3716165
求助须知:如何正确求助?哪些是违规求助? 3262765
关于积分的说明 9926508
捐赠科研通 2976675
什么是DOI,文献DOI怎么找? 1632440
邀请新用户注册赠送积分活动 774394
科研通“疑难数据库(出版商)”最低求助积分说明 744980