清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times

计算机科学 强化学习 作业车间调度 调度(生产过程) 进化算法 数学优化 人工智能 算法 嵌入式系统 布线(电子设计自动化) 数学
作者
Guohui Zhang,Shaofeng Yan,Xiaohui Song,Deyu Zhang,Shenghui Guo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 107974-107974 被引量:18
标识
DOI:10.1016/j.engappai.2024.107974
摘要

Flexible job-shop scheduling is considerably important in the modern intelligent manufacturing factory. In a real job shop, transportation and setup times account for a large percentage of the total processing flow, and with today's companies demanding higher delivery times, the feasibility and punctuality of scheduling will be considerably reduced if these time constraints are ignored. Recently, several companies have become green in their manufacturing processes. However, transportation, setup, and delivery times have rarely been combined with energy efficiency. To solve this problem, we employed an integer programming approach to develop a complete mathematical model of the problem and simultaneously optimized four objectives: maximum completion time, total energy consumption, workload of critical machines, and penalties for earliness/tardiness. Subsequently, an evolutionary algorithm incorporating reinforcement learning was proposed to solve the model. The algorithm had the following features: (1) four initialization strategies were designed to obtain high-quality populations; (2) a reinforcement learning-based parameter-adaptive strategy was proposed to guide the population to select the best parameters; (3) a critical path-based neighborhood structure with transportation and setup times was designed, and according to the objectives of this study, four additional neighborhood structures were designed; (4) a reference point-based non-dominated sorting selection was presented to guide the solution toward the Pareto-optimal front; and (5) an external archive was proposed to enhance the utilization of abandoned historical solutions. Finally, the effectiveness of this algorithm was demonstrated using 33 benchmark instances of variants and comparison experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助challenger采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Hiram完成签到,获得积分10
23秒前
熊子文完成签到 ,获得积分10
50秒前
54秒前
慧仔53完成签到 ,获得积分20
1分钟前
1分钟前
一叶扁舟完成签到 ,获得积分10
1分钟前
多多发布了新的文献求助10
1分钟前
2分钟前
yw发布了新的文献求助10
2分钟前
科研通AI5应助笑面客采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
猪猪hero应助默默无闻采纳,获得10
2分钟前
2分钟前
笑面客发布了新的文献求助10
2分钟前
科研通AI5应助yw采纳,获得30
2分钟前
鲤鱼越越完成签到 ,获得积分10
2分钟前
默默无闻完成签到,获得积分10
2分钟前
3分钟前
drhwang完成签到,获得积分10
3分钟前
3分钟前
yw发布了新的文献求助30
3分钟前
vbnn完成签到 ,获得积分10
3分钟前
zhdjj完成签到 ,获得积分10
3分钟前
violetlishu完成签到 ,获得积分10
4分钟前
碗碗豆喵完成签到 ,获得积分10
4分钟前
www完成签到 ,获得积分10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
醋溜荧光大蒜完成签到 ,获得积分10
4分钟前
Xu完成签到,获得积分10
4分钟前
欣欣完成签到,获得积分10
4分钟前
小蘑菇应助mia采纳,获得10
4分钟前
科目三应助lanxinge采纳,获得10
5分钟前
Barid完成签到,获得积分10
5分钟前
刘刘完成签到 ,获得积分10
5分钟前
zhanlang完成签到 ,获得积分10
5分钟前
谨慎的元冬完成签到 ,获得积分10
5分钟前
爱上阳光的鱼完成签到 ,获得积分10
6分钟前
牙瓜完成签到 ,获得积分10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746201
求助须知:如何正确求助?哪些是违规求助? 3289015
关于积分的说明 10061755
捐赠科研通 3005280
什么是DOI,文献DOI怎么找? 1650186
邀请新用户注册赠送积分活动 785753
科研通“疑难数据库(出版商)”最低求助积分说明 751258