Deep Variational Network Toward Blind Image Restoration

图像复原 计算机科学 人工智能 最大后验估计 推论 噪音(视频) 算法 模式识别(心理学) 图像(数学) 机器学习 图像处理 数学 最大似然 统计
作者
Zongsheng Yue,Hongwei Yong,Qian Zhao,Lei Zhang,Deyu Meng,Kenneth K. Wong
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (11): 7011-7026 被引量:3
标识
DOI:10.1109/tpami.2024.3365745
摘要

Blind image restoration (IR) is a common yet challenging problem in computer vision. Classical model-based methods and recent deep learning (DL)-based methods represent two different methodologies for this problem, each with its own merits and drawbacks. In this paper, we propose a novel blind image restoration method, aiming to integrate both the advantages of them. Specifically, we construct a general Bayesian generative model for the blind IR, which explicitly depicts the degradation process. In this proposed model, a pixel-wise non-i.i.d. Gaussian distribution is employed to fit the image noise. It is with more flexibility than the simple i.i.d. Gaussian or Laplacian distributions as adopted in most of conventional methods, so as to handle more complicated noise types contained in the image degradation. To solve the model, we design a variational inference algorithm where all the expected posteriori distributions are parameterized as deep neural networks to increase their model capability. Notably, such an inference algorithm induces a unified framework to jointly deal with the tasks of degradation estimation and image restoration. Further, the degradation information estimated in the former task is utilized to guide the latter IR process. Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts. The source code is available at https://github.com/zsyOAOA/VIRNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dildil完成签到,获得积分10
1秒前
刻苦的媚颜完成签到 ,获得积分10
1秒前
Anastasia发布了新的文献求助10
2秒前
2秒前
言亦云应助夏林采纳,获得20
2秒前
SciGPT应助鱼鱼鱼采纳,获得10
2秒前
SciGPT应助sunaq采纳,获得10
2秒前
3秒前
3秒前
静然发布了新的文献求助10
3秒前
3秒前
3秒前
SYLH应助尔沁采纳,获得30
4秒前
可爱的函函应助金不换采纳,获得10
5秒前
5秒前
5秒前
激情的元正完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
MingY发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
大眼的平松完成签到 ,获得积分10
7秒前
札七发布了新的文献求助30
7秒前
独特乘风完成签到,获得积分10
7秒前
小强呀发布了新的文献求助10
7秒前
7秒前
打打应助刘仁轨采纳,获得10
8秒前
选择性哑巴完成签到 ,获得积分10
8秒前
9秒前
科研辣椒发布了新的文献求助10
9秒前
windyhill完成签到,获得积分10
10秒前
10秒前
LEMONS应助yuanquaner采纳,获得10
11秒前
Orange应助一一采纳,获得10
11秒前
善学以致用应助飞太难采纳,获得10
11秒前
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594