亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel semi-supervised prototype network with two-stream wavelet scattering convolutional encoder for TBM main bearing few-shot fault diagnosis

断层(地质) 编码器 方位(导航) 小波 人工智能 计算机科学 模式识别(心理学) 特征(语言学) 特征提取 噪音(视频) 监督学习 卷积神经网络 地质学 人工神经网络 地震学 图像(数学) 操作系统 哲学 语言学
作者
Xingchen Fu,Jianfeng Tao,Keming Jiao,Chengliang Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111408-111408 被引量:15
标识
DOI:10.1016/j.knosys.2024.111408
摘要

Accurately sensing the main bearing state and diagnosing fault types is crucial to ensure the safe operation of the main drive system of tunnel boring machines. Currently, the research on large-scale bearing fault diagnosis in industrial scenarios is severely limited by the quality and quantity of monitoring data. Conventional external vibration monitoring devices are difficult to adapt to complex and harsh working conditions of excavation equipment, and constantly changing low-speed and heavy-load operating conditions make similar labeled samples very scarce. To tackle this concern, we propose a semi-supervised prototype network with the two-stream wavelet scattering convolutional encoder (TWSCE-SSPN) based on roller state signals. By fusing radial and axial features of rollers using the two-stream structure and employing wavelet scattering transform and attention mechanism in the convolutional feature encoder, the model exhibits excellent feature mapping capabilities. Following the semi-supervised meta-learning paradigm, the proposed model uses the prototype generated by unlabeled sample features to modify the initial prototype generated by labeled sample features to augment the accuracy of classification in few-shot learning. The integrated sensing roller main bearing testbed was set up and fault datasets were established to verify the few-shot classification and anti-noise ability of the algorithm. Experimental results show that TWSCE-SSPN achieved 98.17 % accuracy at 1 shot, which is at least 18.17 % higher than existing methods. Furthermore, even under a signal-to-noise ratio of 0 dB, the few-shot recognition accuracy can remain 91.83 %. This verifies the superiority of the model in diagnosing main bearing faults under few-shot and strong noise conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
19秒前
寻道图强应助科研通管家采纳,获得50
25秒前
Jasper应助诉与山风听采纳,获得10
28秒前
Tree_QD完成签到 ,获得积分10
28秒前
CMUSK完成签到,获得积分10
29秒前
1分钟前
yang发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助10
1分钟前
研友_VZG7GZ应助优美香露采纳,获得30
1分钟前
2分钟前
2分钟前
Carol发布了新的文献求助10
2分钟前
2分钟前
2分钟前
优美香露发布了新的文献求助30
2分钟前
善学以致用应助优美香露采纳,获得30
2分钟前
2分钟前
ajing发布了新的文献求助10
2分钟前
2分钟前
3分钟前
zwang688完成签到,获得积分10
3分钟前
OCDer发布了新的文献求助10
3分钟前
3分钟前
yang发布了新的文献求助10
3分钟前
OCDer完成签到,获得积分0
3分钟前
3分钟前
Zima发布了新的文献求助10
4分钟前
Zima完成签到,获得积分10
4分钟前
年轻绮波完成签到,获得积分10
4分钟前
4分钟前
4分钟前
jianglan完成签到,获得积分10
4分钟前
4分钟前
jason完成签到 ,获得积分10
4分钟前
4分钟前
刻苦的小土豆完成签到 ,获得积分10
5分钟前
香蕉觅云应助如意修洁采纳,获得10
5分钟前
雨jia完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4815338
关于积分的说明 15080712
捐赠科研通 4816255
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532242
关于科研通互助平台的介绍 1490814