A novel semi-supervised prototype network with two-stream wavelet scattering convolutional encoder for TBM main bearing few-shot fault diagnosis

断层(地质) 编码器 方位(导航) 小波 人工智能 计算机科学 模式识别(心理学) 弹丸 单发 散射 卷积神经网络 地质学 材料科学 物理 光学 地震学 操作系统 冶金
作者
Xingchen Fu,Jianfeng Tao,Keming Jiao,Chengliang Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111408-111408 被引量:5
标识
DOI:10.1016/j.knosys.2024.111408
摘要

Accurately sensing the main bearing state and diagnosing fault types is crucial to ensure the safe operation of the main drive system of tunnel boring machines. Currently, the research on large-scale bearing fault diagnosis in industrial scenarios is severely limited by the quality and quantity of monitoring data. Conventional external vibration monitoring devices are difficult to adapt to complex and harsh working conditions of excavation equipment, and constantly changing low-speed and heavy-load operating conditions make similar labeled samples very scarce. To tackle this concern, we propose a semi-supervised prototype network with the two-stream wavelet scattering convolutional encoder (TWSCE-SSPN) based on roller state signals. By fusing radial and axial features of rollers using the two-stream structure and employing wavelet scattering transform and attention mechanism in the convolutional feature encoder, the model exhibits excellent feature mapping capabilities. Following the semi-supervised meta-learning paradigm, the proposed model uses the prototype generated by unlabeled sample features to modify the initial prototype generated by labeled sample features to augment the accuracy of classification in few-shot learning. The integrated sensing roller main bearing testbed was set up and fault datasets were established to verify the few-shot classification and anti-noise ability of the algorithm. Experimental results show that TWSCE-SSPN achieved 98.17 % accuracy at 1 shot, which is at least 18.17 % higher than existing methods. Furthermore, even under a signal-to-noise ratio of 0 dB, the few-shot recognition accuracy can remain 91.83 %. This verifies the superiority of the model in diagnosing main bearing faults under few-shot and strong noise conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溪秋白发布了新的文献求助10
刚刚
liux发布了新的文献求助10
2秒前
benben7发布了新的文献求助10
2秒前
FODCOC发布了新的文献求助200
3秒前
LI发布了新的文献求助10
5秒前
5秒前
勤劳的世平完成签到,获得积分10
6秒前
DDX完成签到 ,获得积分10
6秒前
overThat发布了新的文献求助10
7秒前
8秒前
9秒前
廿廿应助科研通管家采纳,获得10
10秒前
anonymous发布了新的文献求助10
10秒前
10秒前
廿廿应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得30
11秒前
Singularity应助科研通管家采纳,获得20
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
廿廿应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
A.y.w应助科研通管家采纳,获得50
11秒前
pluto应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
小李发布了新的文献求助10
14秒前
TY完成签到,获得积分10
14秒前
姜迟迟完成签到,获得积分10
16秒前
华仔应助Dawn采纳,获得10
17秒前
hi849发布了新的文献求助10
17秒前
研友_VZG7GZ应助小笑采纳,获得10
20秒前
anonymous完成签到,获得积分10
20秒前
22秒前
隐形曼青应助魔幻蛋挞采纳,获得10
22秒前
25秒前
27秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084398
求助须知:如何正确求助?哪些是违规求助? 2737347
关于积分的说明 7544854
捐赠科研通 2386981
什么是DOI,文献DOI怎么找? 1265740
科研通“疑难数据库(出版商)”最低求助积分说明 613167
版权声明 598320