A novel semi-supervised prototype network with two-stream wavelet scattering convolutional encoder for TBM main bearing few-shot fault diagnosis

断层(地质) 编码器 方位(导航) 小波 人工智能 计算机科学 模式识别(心理学) 弹丸 单发 散射 卷积神经网络 地质学 材料科学 物理 光学 地震学 冶金 操作系统
作者
Xingchen Fu,Jianfeng Tao,Keming Jiao,Chengliang Liu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:286: 111408-111408 被引量:5
标识
DOI:10.1016/j.knosys.2024.111408
摘要

Accurately sensing the main bearing state and diagnosing fault types is crucial to ensure the safe operation of the main drive system of tunnel boring machines. Currently, the research on large-scale bearing fault diagnosis in industrial scenarios is severely limited by the quality and quantity of monitoring data. Conventional external vibration monitoring devices are difficult to adapt to complex and harsh working conditions of excavation equipment, and constantly changing low-speed and heavy-load operating conditions make similar labeled samples very scarce. To tackle this concern, we propose a semi-supervised prototype network with the two-stream wavelet scattering convolutional encoder (TWSCE-SSPN) based on roller state signals. By fusing radial and axial features of rollers using the two-stream structure and employing wavelet scattering transform and attention mechanism in the convolutional feature encoder, the model exhibits excellent feature mapping capabilities. Following the semi-supervised meta-learning paradigm, the proposed model uses the prototype generated by unlabeled sample features to modify the initial prototype generated by labeled sample features to augment the accuracy of classification in few-shot learning. The integrated sensing roller main bearing testbed was set up and fault datasets were established to verify the few-shot classification and anti-noise ability of the algorithm. Experimental results show that TWSCE-SSPN achieved 98.17 % accuracy at 1 shot, which is at least 18.17 % higher than existing methods. Furthermore, even under a signal-to-noise ratio of 0 dB, the few-shot recognition accuracy can remain 91.83 %. This verifies the superiority of the model in diagnosing main bearing faults under few-shot and strong noise conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shirley发布了新的文献求助10
刚刚
顾矜应助Zkxxxx采纳,获得10
刚刚
1秒前
1秒前
kkkkkkkk完成签到,获得积分10
2秒前
3秒前
科研通AI5应助张三采纳,获得10
3秒前
jxp完成签到,获得积分10
4秒前
LLL发布了新的文献求助10
5秒前
金屋藏娇完成签到 ,获得积分10
5秒前
naplzp完成签到,获得积分10
6秒前
6秒前
xukaixuan001发布了新的文献求助10
7秒前
星辰大海应助651采纳,获得10
7秒前
8秒前
冷先森EPC完成签到,获得积分10
8秒前
不可说完成签到 ,获得积分10
9秒前
11秒前
海棠发布了新的文献求助10
12秒前
13秒前
14秒前
枳生淮北发布了新的文献求助10
14秒前
LLL完成签到,获得积分10
14秒前
16秒前
18秒前
彭于晏应助Feng5945采纳,获得10
19秒前
张三发布了新的文献求助10
20秒前
认真火车发布了新的文献求助10
21秒前
21秒前
天下无贼完成签到,获得积分10
21秒前
lailai完成签到 ,获得积分10
22秒前
甜蜜花完成签到,获得积分10
22秒前
lll完成签到,获得积分10
22秒前
星辰大海应助枳生淮北采纳,获得10
23秒前
啦啦啦啦啦啦啦完成签到,获得积分10
23秒前
小夏发布了新的文献求助10
24秒前
汉堡包应助矢呆芬采纳,获得10
26秒前
端庄的皮卡丘完成签到,获得积分10
26秒前
Lucas应助天下无贼采纳,获得10
26秒前
kikikiki完成签到,获得积分10
27秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3683455
求助须知:如何正确求助?哪些是违规求助? 3234796
关于积分的说明 9816742
捐赠科研通 2946423
什么是DOI,文献DOI怎么找? 1615586
邀请新用户注册赠送积分活动 763049
科研通“疑难数据库(出版商)”最低求助积分说明 737643