亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel semi-supervised prototype network with two-stream wavelet scattering convolutional encoder for TBM main bearing few-shot fault diagnosis

断层(地质) 编码器 方位(导航) 小波 人工智能 计算机科学 模式识别(心理学) 特征(语言学) 特征提取 噪音(视频) 监督学习 卷积神经网络 地质学 人工神经网络 地震学 语言学 哲学 操作系统 图像(数学)
作者
Xingchen Fu,Jianfeng Tao,Keming Jiao,Chengliang Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111408-111408 被引量:15
标识
DOI:10.1016/j.knosys.2024.111408
摘要

Accurately sensing the main bearing state and diagnosing fault types is crucial to ensure the safe operation of the main drive system of tunnel boring machines. Currently, the research on large-scale bearing fault diagnosis in industrial scenarios is severely limited by the quality and quantity of monitoring data. Conventional external vibration monitoring devices are difficult to adapt to complex and harsh working conditions of excavation equipment, and constantly changing low-speed and heavy-load operating conditions make similar labeled samples very scarce. To tackle this concern, we propose a semi-supervised prototype network with the two-stream wavelet scattering convolutional encoder (TWSCE-SSPN) based on roller state signals. By fusing radial and axial features of rollers using the two-stream structure and employing wavelet scattering transform and attention mechanism in the convolutional feature encoder, the model exhibits excellent feature mapping capabilities. Following the semi-supervised meta-learning paradigm, the proposed model uses the prototype generated by unlabeled sample features to modify the initial prototype generated by labeled sample features to augment the accuracy of classification in few-shot learning. The integrated sensing roller main bearing testbed was set up and fault datasets were established to verify the few-shot classification and anti-noise ability of the algorithm. Experimental results show that TWSCE-SSPN achieved 98.17 % accuracy at 1 shot, which is at least 18.17 % higher than existing methods. Furthermore, even under a signal-to-noise ratio of 0 dB, the few-shot recognition accuracy can remain 91.83 %. This verifies the superiority of the model in diagnosing main bearing faults under few-shot and strong noise conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
31秒前
萝卜猪完成签到,获得积分10
52秒前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
FashionBoy应助迅速的岩采纳,获得10
1分钟前
1分钟前
迅速的岩发布了新的文献求助10
1分钟前
2分钟前
在水一方应助迅速的岩采纳,获得10
2分钟前
科研通AI2S应助Yuuw采纳,获得10
2分钟前
YONGGE完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
无虞完成签到,获得积分10
3分钟前
在水一方应助研友_R2D2采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
迅速的岩发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
研友_R2D2发布了新的文献求助10
4分钟前
生姜批发刘哥完成签到 ,获得积分0
4分钟前
朴实剑通完成签到 ,获得积分10
4分钟前
梓歆发布了新的文献求助30
4分钟前
九司应助研友_R2D2采纳,获得10
4分钟前
发发完成签到 ,获得积分10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
5分钟前
打打应助科研通管家采纳,获得10
5分钟前
5分钟前
Alisha完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583243
关于积分的说明 14389081
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472860
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553