A novel semi-supervised prototype network with two-stream wavelet scattering convolutional encoder for TBM main bearing few-shot fault diagnosis

断层(地质) 编码器 方位(导航) 小波 人工智能 计算机科学 模式识别(心理学) 特征(语言学) 特征提取 噪音(视频) 监督学习 卷积神经网络 地质学 人工神经网络 地震学 语言学 哲学 操作系统 图像(数学)
作者
Xingchen Fu,Jianfeng Tao,Keming Jiao,Chengliang Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111408-111408 被引量:15
标识
DOI:10.1016/j.knosys.2024.111408
摘要

Accurately sensing the main bearing state and diagnosing fault types is crucial to ensure the safe operation of the main drive system of tunnel boring machines. Currently, the research on large-scale bearing fault diagnosis in industrial scenarios is severely limited by the quality and quantity of monitoring data. Conventional external vibration monitoring devices are difficult to adapt to complex and harsh working conditions of excavation equipment, and constantly changing low-speed and heavy-load operating conditions make similar labeled samples very scarce. To tackle this concern, we propose a semi-supervised prototype network with the two-stream wavelet scattering convolutional encoder (TWSCE-SSPN) based on roller state signals. By fusing radial and axial features of rollers using the two-stream structure and employing wavelet scattering transform and attention mechanism in the convolutional feature encoder, the model exhibits excellent feature mapping capabilities. Following the semi-supervised meta-learning paradigm, the proposed model uses the prototype generated by unlabeled sample features to modify the initial prototype generated by labeled sample features to augment the accuracy of classification in few-shot learning. The integrated sensing roller main bearing testbed was set up and fault datasets were established to verify the few-shot classification and anti-noise ability of the algorithm. Experimental results show that TWSCE-SSPN achieved 98.17 % accuracy at 1 shot, which is at least 18.17 % higher than existing methods. Furthermore, even under a signal-to-noise ratio of 0 dB, the few-shot recognition accuracy can remain 91.83 %. This verifies the superiority of the model in diagnosing main bearing faults under few-shot and strong noise conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到 ,获得积分10
1秒前
DL应助菠萝采纳,获得10
1秒前
3秒前
菌酱完成签到,获得积分10
3秒前
5秒前
哈哈给哈哈的求助进行了留言
6秒前
小猪发布了新的文献求助10
7秒前
corner发布了新的文献求助10
7秒前
7秒前
情怀应助刘字绮采纳,获得10
8秒前
8秒前
无心客应助WW采纳,获得30
8秒前
思源应助一见喜采纳,获得10
9秒前
汉堡包应助隋玉采纳,获得10
10秒前
隐形曼青应助znlion采纳,获得10
10秒前
YHDing发布了新的文献求助10
10秒前
执着的弱完成签到,获得积分10
10秒前
11秒前
12138完成签到,获得积分10
12秒前
无心发布了新的文献求助10
13秒前
无限的雨梅完成签到 ,获得积分10
13秒前
999完成签到,获得积分10
14秒前
15秒前
ZhS_完成签到,获得积分20
15秒前
li完成签到 ,获得积分10
16秒前
kyer完成签到 ,获得积分10
16秒前
16秒前
16秒前
年轻冰萍发布了新的文献求助10
17秒前
小二郎应助sx采纳,获得10
17秒前
18秒前
19秒前
图图完成签到 ,获得积分10
20秒前
Hilda007应助成功上岸采纳,获得10
21秒前
刘字绮发布了新的文献求助10
21秒前
cc完成签到,获得积分20
22秒前
22秒前
23秒前
Criminology34给曦玥的求助进行了留言
23秒前
123发布了新的文献求助10
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344089
求助须知:如何正确求助?哪些是违规求助? 4479449
关于积分的说明 13942876
捐赠科研通 4376498
什么是DOI,文献DOI怎么找? 2404811
邀请新用户注册赠送积分活动 1397185
关于科研通互助平台的介绍 1369514