A novel semi-supervised prototype network with two-stream wavelet scattering convolutional encoder for TBM main bearing few-shot fault diagnosis

断层(地质) 编码器 方位(导航) 小波 人工智能 计算机科学 模式识别(心理学) 特征(语言学) 特征提取 噪音(视频) 监督学习 卷积神经网络 地质学 人工神经网络 地震学 图像(数学) 操作系统 哲学 语言学
作者
Xingchen Fu,Jianfeng Tao,Keming Jiao,Chengliang Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111408-111408 被引量:15
标识
DOI:10.1016/j.knosys.2024.111408
摘要

Accurately sensing the main bearing state and diagnosing fault types is crucial to ensure the safe operation of the main drive system of tunnel boring machines. Currently, the research on large-scale bearing fault diagnosis in industrial scenarios is severely limited by the quality and quantity of monitoring data. Conventional external vibration monitoring devices are difficult to adapt to complex and harsh working conditions of excavation equipment, and constantly changing low-speed and heavy-load operating conditions make similar labeled samples very scarce. To tackle this concern, we propose a semi-supervised prototype network with the two-stream wavelet scattering convolutional encoder (TWSCE-SSPN) based on roller state signals. By fusing radial and axial features of rollers using the two-stream structure and employing wavelet scattering transform and attention mechanism in the convolutional feature encoder, the model exhibits excellent feature mapping capabilities. Following the semi-supervised meta-learning paradigm, the proposed model uses the prototype generated by unlabeled sample features to modify the initial prototype generated by labeled sample features to augment the accuracy of classification in few-shot learning. The integrated sensing roller main bearing testbed was set up and fault datasets were established to verify the few-shot classification and anti-noise ability of the algorithm. Experimental results show that TWSCE-SSPN achieved 98.17 % accuracy at 1 shot, which is at least 18.17 % higher than existing methods. Furthermore, even under a signal-to-noise ratio of 0 dB, the few-shot recognition accuracy can remain 91.83 %. This verifies the superiority of the model in diagnosing main bearing faults under few-shot and strong noise conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星星点灯完成签到,获得积分10
2秒前
甜美无剑应助Pluto采纳,获得30
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
子昂加加油完成签到,获得积分10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
元谷雪应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Lx发布了新的文献求助10
3秒前
承乐应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
乐空思应助科研通管家采纳,获得30
3秒前
元谷雪应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
元谷雪应助科研通管家采纳,获得10
3秒前
3秒前
核桃应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得15
4秒前
4秒前
4秒前
4秒前
4秒前
渴望者发布了新的文献求助10
5秒前
6秒前
FightingW发布了新的文献求助10
7秒前
在水一方应助阳光采纳,获得10
7秒前
小衫生发布了新的文献求助30
7秒前
DumPling完成签到 ,获得积分10
7秒前
XIAOJU_U完成签到 ,获得积分10
8秒前
陈星发布了新的文献求助10
8秒前
凡仔发布了新的文献求助10
8秒前
9秒前
llll发布了新的文献求助10
9秒前
11秒前
隐形曼青应助ri_290采纳,获得10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781