石墨烯
焦耳加热
超级电容器
材料科学
氧化物
焦耳(编程语言)
拉曼光谱
石墨烯泡沫
氧化石墨烯纸
碳纤维
比表面积
纳米技术
复合材料
电化学
电极
电气工程
物理
工程类
复合数
化学
光学
催化作用
高效能源利用
冶金
物理化学
生物化学
作者
Zakhar Ivanovich Evseev,A R Prokopiev,Petr Stanislavovich Dmitriev,Nikolay Nikolaevich Loskin,Dmitrii Nikolaevich Popov
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2024-01-25
卷期号:17 (3): 576-576
摘要
The rapid development of electric vehicles, unmanned aerial vehicles, and wearable electronic devices has led to great interest in research related to the synthesis of graphene with a high specific surface area for energy applications. However, the problem of graphene synthesis scalability, as well as the lengthy duration and high energy intensity of the activation processes of carbon materials, are significant disadvantages. In this study, a novel reactor was developed for the green, simple, and scalable electrochemical synthesis of graphene oxide with a low oxygen content of 14.1%. The resulting material was activated using the fast joule heating method. The processing of mildly oxidized graphene with a high-energy short electrical pulse (32 ms) made it possible to obtain a graphene-based porous carbon material with a specific surface area of up to 1984.5 m2/g. The increase in the specific surface area was attributed to the rupture of the original graphene flakes into smaller particles due to the explosive release of gaseous products. In addition, joule heating was able to instantly reduce the oxidized graphene and decrease its electrical resistance from >10 MΩ/sq to 20 Ω/sq due to sp2 carbon structure regeneration, as confirmed by Raman spectroscopy. The low energy intensity, simplicity, and use of environment-friendly chemicals rendered the proposed method scalable. The resulting graphene material with a high surface area and conductivity can be used in various energy applications, such as Li-ion batteries and supercapacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI