Multiparametric MRI model to predict molecular subtypes of breast cancer using Shapley additive explanations interpretability analysis

医学 队列 乳房磁振造影 乳腺癌 逻辑回归 磁共振成像 置信区间 接收机工作特性 可解释性 核医学 放射科 人工智能 内科学 癌症 乳腺摄影术 计算机科学
作者
Yao Huang,Xiaoxia Wang,Ying Cao,Mengfei Li,Lan Li,Huifang Chen,Sun Tang,Xiaosong Lan,Fujie Jiang,Jiuquan Zhang
出处
期刊:Diagnostic and interventional imaging [Elsevier]
卷期号:105 (5): 191-205 被引量:1
标识
DOI:10.1016/j.diii.2024.01.004
摘要

The purpose of this study was to assess the predictive performance of multiparametric magnetic resonance imaging (MRI) for molecular subtypes and interpret features using SHapley Additive exPlanations (SHAP) analysis. Patients with breast cancer who underwent pre-treatment MRI (including ultrafast dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, diffusion kurtosis imaging and intravoxel incoherent motion) were recruited between February 2019 and January 2022. Thirteen semantic and thirteen multiparametric features were collected and the key features were selected to develop machine-learning models for predicting molecular subtypes of breast cancers (luminal A, luminal B, triple-negative and HER2-enriched) by using stepwise logistic regression. Semantic model and multiparametric model were built and compared based on five machine-learning classifiers. Model decision-making was interpreted using SHAP analysis. A total of 188 women (mean age, 53 ± 11 [standard deviation] years; age range: 25–75 years) were enrolled and further divided into training cohort (131 women) and validation cohort (57 women). XGBoost demonstrated good predictive performance among five machine-learning classifiers. Within the validation cohort, the areas under the receiver operating characteristic curves (AUCs) for the semantic models ranged from 0.693 (95% confidence interval [CI]: 0.478–0.839) for HER2-enriched subtype to 0.764 (95% CI: 0.681–0.908) for luminal A subtype, inferior to multiparametric models that yielded AUCs ranging from 0.771 (95% CI: 0.630–0.888) for HER2-enriched subtype to 0.857 (95% CI: 0.717–0.957) for triple-negative subtype. The AUCs between the semantic and the multiparametric models did not show significant differences (P range: 0.217–0.640). SHAP analysis revealed that lower iAUC, higher kurtosis, lower D*, and lower kurtosis were distinctive features for luminal A, luminal B, triple-negative breast cancer, and HER2-enriched subtypes, respectively. Multiparametric MRI is superior to semantic models to effectively predict the molecular subtypes of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
未命名发布了新的文献求助10
刚刚
难过的青争完成签到,获得积分20
1秒前
2秒前
ouleoule发布了新的文献求助10
2秒前
NexusExplorer应助默默采纳,获得10
2秒前
2秒前
搜集达人应助曾无忧采纳,获得10
3秒前
华仔应助czyczy采纳,获得10
3秒前
5秒前
5秒前
科研通AI2S应助MADKAI采纳,获得10
5秒前
扬帆起航行万里完成签到,获得积分10
6秒前
6秒前
云_123发布了新的文献求助10
8秒前
8秒前
李健的小迷弟应助whale采纳,获得10
10秒前
stop here发布了新的文献求助50
10秒前
可爱的函函应助xww采纳,获得10
10秒前
北栀发布了新的文献求助10
11秒前
stayloy完成签到,获得积分10
11秒前
ybwei2008_163发布了新的文献求助10
11秒前
11秒前
LL发布了新的文献求助10
11秒前
JamesPei应助Denmark采纳,获得10
11秒前
十三月完成签到,获得积分10
11秒前
张磊发布了新的文献求助10
12秒前
biubiuu完成签到,获得积分10
12秒前
HXuer完成签到,获得积分10
13秒前
13秒前
冷酷亦巧发布了新的文献求助10
13秒前
14秒前
六沉发布了新的文献求助10
14秒前
15秒前
积雪完成签到,获得积分10
15秒前
不配.应助活力数据线采纳,获得20
15秒前
Zhong完成签到,获得积分20
15秒前
66发布了新的文献求助10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135300
求助须知:如何正确求助?哪些是违规求助? 2786282
关于积分的说明 7776733
捐赠科研通 2442250
什么是DOI,文献DOI怎么找? 1298501
科研通“疑难数据库(出版商)”最低求助积分说明 625124
版权声明 600847