Multiparametric MRI model to predict molecular subtypes of breast cancer using Shapley additive explanations interpretability analysis

医学 乳腺癌 可解释性 放射科 肿瘤科 人工智能 内科学 癌症 计算机科学
作者
Yao Huang,Xiaoxia Wang,Ying Cao,Mengfei Li,Lan Li,Huifang Chen,Sun Tang,Xiaosong Lan,Fujie Jiang,Jiuquan Zhang
出处
期刊:Diagnostic and interventional imaging [Elsevier]
卷期号:105 (5): 191-205 被引量:8
标识
DOI:10.1016/j.diii.2024.01.004
摘要

The purpose of this study was to assess the predictive performance of multiparametric magnetic resonance imaging (MRI) for molecular subtypes and interpret features using SHapley Additive exPlanations (SHAP) analysis. Patients with breast cancer who underwent pre-treatment MRI (including ultrafast dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, diffusion kurtosis imaging and intravoxel incoherent motion) were recruited between February 2019 and January 2022. Thirteen semantic and thirteen multiparametric features were collected and the key features were selected to develop machine-learning models for predicting molecular subtypes of breast cancers (luminal A, luminal B, triple-negative and HER2-enriched) by using stepwise logistic regression. Semantic model and multiparametric model were built and compared based on five machine-learning classifiers. Model decision-making was interpreted using SHAP analysis. A total of 188 women (mean age, 53 ± 11 [standard deviation] years; age range: 25–75 years) were enrolled and further divided into training cohort (131 women) and validation cohort (57 women). XGBoost demonstrated good predictive performance among five machine-learning classifiers. Within the validation cohort, the areas under the receiver operating characteristic curves (AUCs) for the semantic models ranged from 0.693 (95% confidence interval [CI]: 0.478–0.839) for HER2-enriched subtype to 0.764 (95% CI: 0.681–0.908) for luminal A subtype, inferior to multiparametric models that yielded AUCs ranging from 0.771 (95% CI: 0.630–0.888) for HER2-enriched subtype to 0.857 (95% CI: 0.717–0.957) for triple-negative subtype. The AUCs between the semantic and the multiparametric models did not show significant differences (P range: 0.217–0.640). SHAP analysis revealed that lower iAUC, higher kurtosis, lower D*, and lower kurtosis were distinctive features for luminal A, luminal B, triple-negative breast cancer, and HER2-enriched subtypes, respectively. Multiparametric MRI is superior to semantic models to effectively predict the molecular subtypes of breast cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ohh完成签到,获得积分10
1秒前
我是老大应助研友_LOokQL采纳,获得10
1秒前
yutingemail发布了新的文献求助10
2秒前
2秒前
2秒前
大个应助平常的宝马采纳,获得10
2秒前
lily发布了新的文献求助10
3秒前
4秒前
橙橙发布了新的文献求助10
4秒前
hazekurt完成签到,获得积分10
4秒前
董晏殊完成签到,获得积分10
4秒前
玖锱完成签到,获得积分20
4秒前
4秒前
hzzzz完成签到,获得积分10
4秒前
佳怡完成签到,获得积分10
4秒前
4秒前
蕊蕊完成签到,获得积分10
5秒前
5秒前
5秒前
求助人员发布了新的文献求助30
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
微笑发布了新的文献求助10
6秒前
6秒前
Hearn发布了新的文献求助10
6秒前
英俊的铭应助Regina采纳,获得10
7秒前
奋斗黎昕完成签到,获得积分10
7秒前
小易发布了新的文献求助10
7秒前
7秒前
歪西西完成签到,获得积分10
7秒前
娜娜完成签到,获得积分20
7秒前
一玥完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
zzr123发布了新的文献求助10
8秒前
8秒前
8秒前
华hua完成签到,获得积分10
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066