已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiparametric MRI model to predict molecular subtypes of breast cancer using Shapley additive explanations interpretability analysis

医学 乳腺癌 可解释性 放射科 肿瘤科 人工智能 内科学 癌症 计算机科学
作者
Yao Huang,Xiaoxia Wang,Ying Cao,Mengfei Li,Lan Li,Huifang Chen,Sun Tang,Xiaosong Lan,Fujie Jiang,Jiuquan Zhang
出处
期刊:Diagnostic and interventional imaging [Elsevier BV]
卷期号:105 (5): 191-205 被引量:8
标识
DOI:10.1016/j.diii.2024.01.004
摘要

The purpose of this study was to assess the predictive performance of multiparametric magnetic resonance imaging (MRI) for molecular subtypes and interpret features using SHapley Additive exPlanations (SHAP) analysis. Patients with breast cancer who underwent pre-treatment MRI (including ultrafast dynamic contrast-enhanced MRI, magnetic resonance spectroscopy, diffusion kurtosis imaging and intravoxel incoherent motion) were recruited between February 2019 and January 2022. Thirteen semantic and thirteen multiparametric features were collected and the key features were selected to develop machine-learning models for predicting molecular subtypes of breast cancers (luminal A, luminal B, triple-negative and HER2-enriched) by using stepwise logistic regression. Semantic model and multiparametric model were built and compared based on five machine-learning classifiers. Model decision-making was interpreted using SHAP analysis. A total of 188 women (mean age, 53 ± 11 [standard deviation] years; age range: 25–75 years) were enrolled and further divided into training cohort (131 women) and validation cohort (57 women). XGBoost demonstrated good predictive performance among five machine-learning classifiers. Within the validation cohort, the areas under the receiver operating characteristic curves (AUCs) for the semantic models ranged from 0.693 (95% confidence interval [CI]: 0.478–0.839) for HER2-enriched subtype to 0.764 (95% CI: 0.681–0.908) for luminal A subtype, inferior to multiparametric models that yielded AUCs ranging from 0.771 (95% CI: 0.630–0.888) for HER2-enriched subtype to 0.857 (95% CI: 0.717–0.957) for triple-negative subtype. The AUCs between the semantic and the multiparametric models did not show significant differences (P range: 0.217–0.640). SHAP analysis revealed that lower iAUC, higher kurtosis, lower D*, and lower kurtosis were distinctive features for luminal A, luminal B, triple-negative breast cancer, and HER2-enriched subtypes, respectively. Multiparametric MRI is superior to semantic models to effectively predict the molecular subtypes of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
利好完成签到 ,获得积分10
2秒前
G1997完成签到 ,获得积分10
4秒前
CodeCraft应助友好听云采纳,获得10
5秒前
hh发布了新的文献求助10
6秒前
休眠补正完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
14秒前
慕青应助hh采纳,获得10
17秒前
要你命3000发布了新的文献求助10
20秒前
万能图书馆应助Newky采纳,获得10
41秒前
42秒前
科研通AI5应助虞美人采纳,获得10
43秒前
zorro3574完成签到,获得积分10
44秒前
参宿七发布了新的文献求助10
50秒前
守一完成签到,获得积分10
50秒前
科研通AI5应助重要的夏烟采纳,获得10
54秒前
参宿七完成签到,获得积分10
58秒前
单身的老太完成签到,获得积分10
1分钟前
顾矜应助study666采纳,获得10
1分钟前
WW完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
oupai发布了新的文献求助10
1分钟前
1分钟前
灰色白面鸮完成签到,获得积分10
1分钟前
hh发布了新的文献求助10
1分钟前
虞美人发布了新的文献求助10
1分钟前
Orange应助lalalatiancai采纳,获得10
1分钟前
study666发布了新的文献求助10
1分钟前
zzyytt发布了新的文献求助10
1分钟前
领导范儿应助周而复始@采纳,获得10
1分钟前
1分钟前
不渝发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968199
求助须知:如何正确求助?哪些是违规求助? 3513215
关于积分的说明 11166782
捐赠科研通 3248448
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629