Dynamic Weighted Adversarial Learning for Semi-Supervised Classification under Intersectional Class Mismatch

计算机科学 分类器(UML) 人工智能 加权 机器学习 标记数据 Boosting(机器学习) 班级(哲学) 对抗制 半监督学习 模式识别(心理学) 数据挖掘 医学 放射科
作者
Mingyu Li,Tao Zhou,Zhuo Huang,Jian Yang,Jie Yang,Chen Gong
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3635310
摘要

Nowadays, class-mismatch problem has drawn intensive attention in Semi-Supervised Learning (SSL), where the classes of labeled data are assumed to be only a subset of the classes of unlabeled data. However, in a more realistic scenario, the labeled data and unlabeled data often share some common classes while they also have their individual classes, which leads to an “intersectional class-mismatch’’ problem. As a result, existing SSL methods are often confused by these individual classes and suffer from performance degradation. To address this problem, we propose a novel Dynamic Weighted Adversarial Learning (DWAL) framework to properly utilize unlabeled data for boosting the SSL performance. Specifically, to handle the influence of the individual classes in unlabeled data ( i.e. , Out-Of-Distribution classes), we propose an enhanced adversarial domain adaptation to dynamically assign weight for each unlabeled example from the perspectives of domain adaptation and a class-wise weighting mechanism, which consists of transferability score and prediction confidence value. Besides, to handle the influence of the individual classes in labeled data ( i.e. , private classes), we propose a dissimilarity maximization strategy to suppress the inaccurate correlations caused by the examples of individual classes within labeled data. Therefore, our DWAL can properly make use of unlabeled data to acquire an accurate SSL classifier under intersectional class-mismatch setting, and extensive experimental results on five public datasets demonstrate the effectiveness of the proposed model over other state-of-the-art SSL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰发布了新的文献求助30
1秒前
负责凛完成签到,获得积分10
1秒前
冰西瓜完成签到 ,获得积分10
2秒前
huk发布了新的文献求助10
3秒前
3秒前
大个应助Mudiay采纳,获得10
4秒前
5秒前
5秒前
SciGPT应助闪闪的屁股采纳,获得10
6秒前
yaoyh_gc发布了新的文献求助10
7秒前
7秒前
7秒前
搜集达人应助吉吉采纳,获得10
9秒前
CipherSage应助Silole采纳,获得10
9秒前
称心寒松发布了新的文献求助10
10秒前
ding应助佳凝采纳,获得10
10秒前
11秒前
善学以致用应助优秀凌青采纳,获得10
11秒前
12秒前
神秘玩家发布了新的文献求助10
13秒前
科研通AI5应助星辰采纳,获得10
13秒前
16秒前
17秒前
17秒前
皮肤专硕小白一枚完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
21秒前
烟花应助Caden采纳,获得10
21秒前
Serein完成签到,获得积分10
21秒前
oooo发布了新的文献求助10
22秒前
23秒前
Sam十九完成签到 ,获得积分10
23秒前
23秒前
共享精神应助清脆的书桃采纳,获得10
23秒前
Silole发布了新的文献求助10
23秒前
旸里完成签到,获得积分10
24秒前
李李留下了新的社区评论
25秒前
迷路的幻灵完成签到,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427