Dynamic Weighted Adversarial Learning for Semi-Supervised Classification under Intersectional Class Mismatch

计算机科学 分类器(UML) 人工智能 加权 机器学习 标记数据 Boosting(机器学习) 班级(哲学) 对抗制 半监督学习 模式识别(心理学) 数据挖掘 医学 放射科
作者
Mingyu Li,Tao Zhou,Zhuo Huang,Jian Yang,Jie Yang,Chen Gong
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3635310
摘要

Nowadays, class-mismatch problem has drawn intensive attention in Semi-Supervised Learning (SSL), where the classes of labeled data are assumed to be only a subset of the classes of unlabeled data. However, in a more realistic scenario, the labeled data and unlabeled data often share some common classes while they also have their individual classes, which leads to an “intersectional class-mismatch’’ problem. As a result, existing SSL methods are often confused by these individual classes and suffer from performance degradation. To address this problem, we propose a novel Dynamic Weighted Adversarial Learning (DWAL) framework to properly utilize unlabeled data for boosting the SSL performance. Specifically, to handle the influence of the individual classes in unlabeled data ( i.e. , Out-Of-Distribution classes), we propose an enhanced adversarial domain adaptation to dynamically assign weight for each unlabeled example from the perspectives of domain adaptation and a class-wise weighting mechanism, which consists of transferability score and prediction confidence value. Besides, to handle the influence of the individual classes in labeled data ( i.e. , private classes), we propose a dissimilarity maximization strategy to suppress the inaccurate correlations caused by the examples of individual classes within labeled data. Therefore, our DWAL can properly make use of unlabeled data to acquire an accurate SSL classifier under intersectional class-mismatch setting, and extensive experimental results on five public datasets demonstrate the effectiveness of the proposed model over other state-of-the-art SSL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助冷静鑫鹏采纳,获得10
1秒前
孤独的丸子头完成签到,获得积分10
2秒前
2秒前
Shawn_54完成签到,获得积分0
2秒前
3秒前
3秒前
3秒前
3秒前
洗杯子完成签到,获得积分10
3秒前
墩墩小猪咪完成签到,获得积分10
4秒前
4秒前
4秒前
full发布了新的文献求助10
4秒前
陈惠卿88完成签到,获得积分10
5秒前
该房地产个人的完成签到,获得积分10
5秒前
5秒前
周晏平发布了新的文献求助10
7秒前
XaiverX完成签到,获得积分10
7秒前
7秒前
洗杯子发布了新的文献求助10
7秒前
丞哥发布了新的文献求助10
8秒前
SciGPT应助ChiariRay采纳,获得20
8秒前
今后应助ukulele117采纳,获得10
8秒前
Loooong完成签到,获得积分0
9秒前
9秒前
天天快乐应助DWT采纳,获得30
10秒前
11秒前
www1234发布了新的文献求助10
11秒前
syy666完成签到,获得积分10
12秒前
今后应助洗杯子采纳,获得10
12秒前
9377完成签到 ,获得积分10
12秒前
烟花应助周舟舟采纳,获得10
12秒前
共享精神应助结实的面包采纳,获得10
14秒前
丘比特应助科研小白兔采纳,获得10
16秒前
syy666发布了新的文献求助10
16秒前
聪明映菡发布了新的文献求助10
16秒前
丞哥完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465976
求助须知:如何正确求助?哪些是违规求助? 3058928
关于积分的说明 9063856
捐赠科研通 2749333
什么是DOI,文献DOI怎么找? 1508459
科研通“疑难数据库(出版商)”最低求助积分说明 696922
邀请新用户注册赠送积分活动 696617