🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

Seismic predictions of fluids via supervised deep learning: Incorporating various class-rebalance strategies

机器学习 人工智能 计算机科学 欠采样 一般化 化石燃料 人工神经网络 地质学 数学 工程类 数学分析 废物管理
作者
Shunli Gao,Minghui Xu,Luanxiao Zhao,Yuanyuan Chen,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (4): M185-M200 被引量:5
标识
DOI:10.1190/geo2022-0363.1
摘要

Seismic fluids prediction under the machine-learning framework is of great significance for the exploration and development of oil and gas resources, geothermal energy exploitation, carbon dioxide sequestration monitoring, and groundwater management. Data-driven supervised machine-learning algorithms often rely heavily on the characteristics of the data (number of labels and data distribution). The disparity in the number of different labels for the majority and minority samples can hinder the generalization ability of the machine-learning model, especially weakening the predicting power for minority groups (e.g., hydrocarbon-bearing rocks) which are often of essential interest to us. For a clastic reservoir exhibiting a typical class imbalance (the ratio of gas sandstone to other lithofluids is significantly low), under the framework of a supervised convolutional neural network, we investigate and compare various class-rebalance methods to enhance the model’s prediction ability for gas-bearing sandstones. To achieve the purpose of class rebalance, we mainly use sampling methods to obtain class-balanced data sets and cost-sensitive learning methods to modify loss functions. The crosswell blind tests indicate that the ensemble-based undersampling method of BalanceCascade is found to be most effective in enhancing the prediction performance, increasing the F1 score of gas sandstone by as much as 15%. We also propose the combination of Balance Cascade and focal-loss (FL) methods, which can further improve the F1 score of gas-bearing sandstone in several wells compared with using BalanceCascade or FL alone. By incorporating class-rebalance strategies into model building, we finally obtain more reliable seismic prediction results for gas-bearing sandstone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无奈柚子完成签到,获得积分10
2秒前
桐桐应助明月松间照采纳,获得10
3秒前
颜小溪发布了新的文献求助10
5秒前
我是老大应助一条热带鱼采纳,获得30
5秒前
hydrablue发布了新的文献求助10
6秒前
6秒前
舒适行天完成签到,获得积分10
8秒前
浅池星完成签到 ,获得积分10
9秒前
11秒前
zl完成签到 ,获得积分10
11秒前
ardejiang发布了新的文献求助10
11秒前
CodeCraft应助hydrablue采纳,获得10
12秒前
hhhblabla应助宇思源采纳,获得10
13秒前
情怀应助15136780701采纳,获得10
14秒前
追寻麦片发布了新的文献求助10
14秒前
15秒前
黄强完成签到,获得积分10
18秒前
虎头怪发布了新的文献求助10
22秒前
ardejiang发布了新的文献求助10
22秒前
peili完成签到,获得积分0
23秒前
24秒前
24秒前
天天快乐应助追寻麦片采纳,获得10
24秒前
从容的天空完成签到,获得积分10
25秒前
木头马尾应助xiaoxiao采纳,获得10
25秒前
黄强发布了新的文献求助10
25秒前
15136780701发布了新的文献求助10
28秒前
YJL完成签到 ,获得积分10
28秒前
Zcccjy完成签到 ,获得积分10
28秒前
29秒前
29秒前
颜小溪完成签到,获得积分10
31秒前
ding发布了新的文献求助10
34秒前
haha完成签到,获得积分10
38秒前
Orange应助清新的静枫采纳,获得10
39秒前
40秒前
852应助ding采纳,获得10
41秒前
afeiwoo完成签到,获得积分10
42秒前
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
EEG in clinical practice 2nd edition 1994 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3604641
求助须知:如何正确求助?哪些是违规求助? 3172790
关于积分的说明 9575852
捐赠科研通 2878839
什么是DOI,文献DOI怎么找? 1581219
邀请新用户注册赠送积分活动 743529
科研通“疑难数据库(出版商)”最低求助积分说明 725957