State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression

克里金 稳健性(进化) 计算机科学 健康状况 均方误差 堆积 高斯函数 高斯分布 高斯过程 电池(电) 统计 数学 机器学习 功率(物理) 化学 量子力学 生物化学 基因 物理 计算化学 有机化学
作者
Fang Li,Yongjun Min,Ying Zhang,Yong Zhang,Hongfu Zuo,Fang Bai
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:242: 109787-109787 被引量:8
标识
DOI:10.1016/j.ress.2023.109787
摘要

Gaussian process regression (GPR) is extensively employed in lithium-ion battery state-of-health (SOH) estimation, which ensures the safe, reliable operation of electric vehicles (EVs). However, a single GPR can produce performance discrepancies across different fast-charge batteries, as well as high time consumption. Therefore, we propose an SOH estimation method for fast-charging batteries based on stacking ensemble sparse Gaussian process regression (SGPR). First, health factors are extracted in partial discharge fragments to reflect battery degradation. Then, SGPRs based on the fully independent training condition (FITC) are developed with different kernel functions as level-1 learners, and a genetic algorithm (GA) is used to optimize the parameters of the kernel function. Further, the level-2 learner integrates the features produced by the level-1 learner based on cross validation. Finally, the accuracy, robustness, and reliability of the proposed method were evaluated under various fast-charging experiments. The results show that the mean absolute error (MAE) and root mean square error (RMSE) of SOH estimation were within 1.0852% and 1.2123%, respectively, and that the average relative time consumption was reduced by 85.68% compared with stacking ensemble GPR. Thus, the proposed method has broad application prospects in processing vast datasets from numerous batteries in monitoring platforms or cloud data centers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助YY采纳,获得10
刚刚
懦弱的安珊完成签到,获得积分10
1秒前
Akim应助xiaokezhang采纳,获得10
1秒前
1秒前
柠木完成签到 ,获得积分10
1秒前
系统提示发布了新的文献求助10
1秒前
marigold完成签到,获得积分10
1秒前
Gaoge完成签到,获得积分10
2秒前
愉快的无招完成签到,获得积分10
2秒前
2秒前
HEIKU应助习习采纳,获得10
3秒前
3秒前
3秒前
3秒前
合适苗条完成签到,获得积分10
3秒前
Zn应助开水泡饼采纳,获得10
3秒前
科目三应助Liu采纳,获得10
4秒前
4秒前
eating完成签到,获得积分10
4秒前
李双艳完成签到,获得积分10
4秒前
英姑应助科研混子采纳,获得10
4秒前
li完成签到,获得积分10
5秒前
Hungrylunch应助woshiwuziq采纳,获得20
6秒前
合适苗条发布了新的文献求助10
6秒前
安静听白发布了新的文献求助10
6秒前
krystal发布了新的文献求助10
6秒前
7秒前
15122303完成签到,获得积分10
7秒前
lht完成签到 ,获得积分10
8秒前
传奇3应助纯真电源采纳,获得10
8秒前
环走鱼尾纹完成签到 ,获得积分10
8秒前
xiuxiu_27发布了新的文献求助10
9秒前
222完成签到,获得积分10
9秒前
zyz1132完成签到,获得积分10
9秒前
何处芳歇完成签到,获得积分10
10秒前
10秒前
LXYang完成签到,获得积分10
10秒前
10秒前
LL完成签到,获得积分10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678