Dynamic SLAM: A Visual SLAM in Outdoor Dynamic Scenes

人工智能 计算机视觉 计算机科学 同时定位和映射 Orb(光学) 特征(语言学) 管道(软件) 机器人 分割 对象(语法) 移动机器人 图像(数学) 语言学 哲学 程序设计语言
作者
Shuhuan Wen,X.S. Li,Xin Liu,J.C. Li,Sheng Tao,Yidan Long,Tony Z. Qiu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:10
标识
DOI:10.1109/tim.2023.3317378
摘要

Simultaneous localization and mapping (SLAM) has been widely used in augmented reality (AR), virtual reality (VR), robotics, and autonomous vehicles as the theoretical basis for robots to perceive their environment. Most popular SLAM algorithms assume that objects in the scene are static. Solving dynamic problems in SLAM is now attracting increasing attention. In this paper, we propose a method that combines semantic segmentation information and spatial motion information of associated pixels to cope with dynamic objects based on ORB-SLAM2. We add a deep segmentation network SegNet to segment input image and obtain the semantic information for each feature point. Next, the spatial velocity of feature points between adjacent frames is calculated assuming uniform motion. Finally, the two parts are fused for the final judgment, and the dynamic feature points are removed to improve positioning accuracy. We evaluate our SLAM algorithms using the public KITTI dataset. The proposed algorithm has a similar overall accuracy level to ORB-SLAM2, but it is more accurate in sequences with many dynamic objects. On KITTI's raw data sequence containing multiple dynamic objects, our pipeline achieves the best performance, improving 39.5% compared with the original ORB-SLAM2 system. We compare our algorithm with other state-of-the-art SLAM systems used to cope with dynamic environments. The results show that the proposed algorithm has better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
老鼠耗子发布了新的文献求助10
刚刚
飞奔的鱼发布了新的文献求助10
1秒前
Akim应助KID采纳,获得30
1秒前
2秒前
songvv发布了新的文献求助10
2秒前
CodeCraft应助Jammie采纳,获得10
2秒前
kyokukou发布了新的文献求助10
2秒前
积极向上完成签到,获得积分10
2秒前
米娅发布了新的文献求助20
3秒前
喜悦青亦发布了新的文献求助10
3秒前
leave完成签到,获得积分10
3秒前
4秒前
sumuuchen发布了新的文献求助10
4秒前
学习猴发布了新的文献求助10
4秒前
小帅发布了新的文献求助10
4秒前
酷炫书芹完成签到 ,获得积分10
4秒前
xin33完成签到,获得积分10
5秒前
Hyunjinnn发布了新的文献求助10
5秒前
5秒前
研人员完成签到,获得积分10
5秒前
6秒前
李健的粉丝团团长应助fish采纳,获得10
6秒前
yuhaha发布了新的文献求助10
6秒前
田様应助Treasure98采纳,获得10
6秒前
6秒前
7秒前
7秒前
一麻袋开心完成签到 ,获得积分10
7秒前
fangyc发布了新的文献求助10
7秒前
脑洞疼应助paacbe采纳,获得10
7秒前
xiubo128完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
zychaos发布了新的文献求助10
9秒前
9秒前
9秒前
swy发布了新的文献求助30
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469573
求助须知:如何正确求助?哪些是违规求助? 3062778
关于积分的说明 9080006
捐赠科研通 2752931
什么是DOI,文献DOI怎么找? 1510668
科研通“疑难数据库(出版商)”最低求助积分说明 697958
邀请新用户注册赠送积分活动 697938