Clinical Decision Support System for All Stages of Gastric Carcinogenesis in Real-Time Endoscopy: Model Establishment and Validation Study

医学 萎缩 发育不良 内窥镜检查 病变 分割 癌症 放射科 人工智能 内科学 病理 计算机科学
作者
Eun Jeong Gong,Chang Seok Bang,Jae Jun Lee,Hae Min Jeong,Gwang Ho Baik,Jae Hoon Jeong,Dick Sigmund,Gi Hun Lee
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e50448-e50448 被引量:6
标识
DOI:10.2196/50448
摘要

Background Our research group previously established a deep-learning–based clinical decision support system (CDSS) for real-time endoscopy-based detection and classification of gastric neoplasms. However, preneoplastic conditions, such as atrophy and intestinal metaplasia (IM) were not taken into account, and there is no established model that classifies all stages of gastric carcinogenesis. Objective This study aims to build and validate a CDSS for real-time endoscopy for all stages of gastric carcinogenesis, including atrophy and IM. Methods A total of 11,868 endoscopic images were used for training and internal testing. The primary outcomes were lesion classification accuracy (6 classes: advanced gastric cancer, early gastric cancer, dysplasia, atrophy, IM, and normal) and atrophy and IM lesion segmentation rates for the segmentation model. The following tests were carried out to validate the performance of lesion classification accuracy: (1) external testing using 1282 images from another institution and (2) evaluation of the classification accuracy of atrophy and IM in real-world procedures in a prospective manner. To estimate the clinical utility, 2 experienced endoscopists were invited to perform a blind test with the same data set. A CDSS was constructed by combining the established 6-class lesion classification model and the preneoplastic lesion segmentation model with the previously established lesion detection model. Results The overall lesion classification accuracy (95% CI) was 90.3% (89%-91.6%) in the internal test. For the performance validation, the CDSS achieved 85.3% (83.4%-97.2%) overall accuracy. The per-class external test accuracies for atrophy and IM were 95.3% (92.6%-98%) and 89.3% (85.4%-93.2%), respectively. CDSS-assisted endoscopy showed an accuracy of 92.1% (88.8%-95.4%) for atrophy and 95.5% (92%-99%) for IM in the real-world application of 522 consecutive screening endoscopies. There was no significant difference in the overall accuracy between the invited endoscopists and established CDSS in the prospective real-clinic evaluation (P=.23). The CDSS demonstrated a segmentation rate of 93.4% (95% CI 92.4%-94.4%) for atrophy or IM lesion segmentation in the internal testing. Conclusions The CDSS achieved high performance in terms of computer-aided diagnosis of all stages of gastric carcinogenesis and demonstrated real-world application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
充电宝应助乔乔兔采纳,获得10
2秒前
xs发布了新的文献求助10
2秒前
2秒前
田様应助Czd采纳,获得10
3秒前
4秒前
liboshi发布了新的文献求助10
5秒前
6秒前
迟大猫应助yang采纳,获得10
6秒前
qinjiehm完成签到,获得积分10
7秒前
脑洞疼应助GanGanGanGan采纳,获得10
9秒前
斯文败类应助tjfwg采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
111完成签到,获得积分10
11秒前
hjs发布了新的文献求助10
11秒前
12秒前
周周南发布了新的文献求助100
13秒前
hu发布了新的文献求助10
13秒前
google发布了新的文献求助10
14秒前
失眠听南完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
虫二队长完成签到,获得积分10
15秒前
VERITAS完成签到,获得积分10
15秒前
16秒前
uu发布了新的文献求助20
17秒前
英姑应助七七采纳,获得10
18秒前
19秒前
zz发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
852应助无情的瑾瑜采纳,获得10
20秒前
彩色一曲关注了科研通微信公众号
21秒前
21秒前
22秒前
xin发布了新的文献求助10
23秒前
24秒前
77完成签到,获得积分10
24秒前
24秒前
领导范儿应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664299
求助须知:如何正确求助?哪些是违规求助? 3224405
关于积分的说明 9757262
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012