Optimizing platelet transfusion through a personalized deep learning risk assessment system for demand management

医学 接收机工作特性 曲线下面积 输血医学 深度学习 学习曲线 急诊医学 内科学 输血 机器学习 计算机科学 操作系统
作者
Merlin Engelke,Cynthia S. Schmidt,Giulia Baldini,Vicky Parmar,René Hosch,Katarzyna Borys,Sven Koitka,Amin T. Turki,Johannes Haubold,Péter Horn,Felix Nensa
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (26): 2315-2326 被引量:3
标识
DOI:10.1182/blood.2023021172
摘要

Abstract Platelet demand management (PDM) is a resource-consuming task for physicians and transfusion managers of large hospitals. Inpatient numbers and institutional standards play significant roles in PDM. However, reliance on these factors alone commonly results in platelet shortages. Using data from multiple sources, we developed, validated, tested, and implemented a patient-specific approach to support PDM that uses a deep learning–based risk score to forecast platelet transfusions for each hospitalized patient in the next 24 hours. The models were developed using retrospective electronic health record data of 34 809 patients treated between 2017 and 2022. Static and time-dependent features included demographics, diagnoses, procedures, blood counts, past transfusions, hematotoxic medications, and hospitalization duration. Using an expanding window approach, we created a training and live-prediction pipeline with a 30-day input and 24-hour forecast. Hyperparameter tuning determined the best validation area under the precision-recall curve (AUC-PR) score for long short-term memory deep learning models, which were then tested on independent data sets from the same hospital. The model tailored for hematology and oncology patients exhibited the best performance (AUC-PR, 0.84; area under the receiver operating characteristic curve [ROC-AUC], 0.98), followed by a multispecialty model covering all other patients (AUC-PR, 0.73). The model specific to cardiothoracic surgery had the lowest performance (AUC-PR, 0.42), likely because of unexpected intrasurgery bleedings. To our knowledge, this is the first deep learning–based platelet transfusion predictor enabling individualized 24-hour risk assessments at high AUC-PR. Implemented as a decision-support system, deep-learning forecasts might improve patient care by detecting platelet demand earlier and preventing critical transfusion shortages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小熊采纳,获得10
1秒前
yykcarl发布了新的文献求助10
1秒前
大佬应助帅气巧荷采纳,获得10
1秒前
vidgers发布了新的文献求助10
1秒前
Yexidong完成签到,获得积分20
2秒前
3秒前
Patrickkkk完成签到,获得积分10
4秒前
Yexidong发布了新的文献求助10
4秒前
Grant完成签到,获得积分10
5秒前
5秒前
6秒前
Jangy发布了新的文献求助10
7秒前
Nina完成签到,获得积分10
7秒前
spike发布了新的文献求助10
7秒前
结实的含烟应助大七采纳,获得10
8秒前
bbn发布了新的文献求助10
10秒前
10秒前
Lucky发布了新的文献求助10
11秒前
领导范儿应助MHK采纳,获得10
12秒前
12秒前
14秒前
里昂123完成签到,获得积分10
15秒前
李婷婷发布了新的文献求助10
16秒前
zhzhzh完成签到,获得积分20
16秒前
Cambridge完成签到,获得积分10
16秒前
小天应助苏打采纳,获得10
17秒前
17秒前
此时此刻完成签到 ,获得积分10
19秒前
天真的嚓茶完成签到,获得积分10
19秒前
李健应助和谐一一采纳,获得10
19秒前
还在吗完成签到,获得积分10
21秒前
闷闷发布了新的文献求助10
21秒前
MHK完成签到,获得积分20
22秒前
小张完成签到 ,获得积分10
23秒前
looocc完成签到,获得积分10
25秒前
李爱国应助zhao采纳,获得10
26秒前
neuarcher完成签到,获得积分10
26秒前
沉静茗完成签到,获得积分10
26秒前
HangY完成签到,获得积分10
27秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461317
求助须知:如何正确求助?哪些是违规求助? 3055029
关于积分的说明 9046143
捐赠科研通 2744961
什么是DOI,文献DOI怎么找? 1505775
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264