GL4SDA: Predicting snoRNA-Disease Associations Using GNNs and LLM Embeddings

计算生物学 疾病 小核仁RNA 生物 计算机科学 医学 内科学 遗传学 非编码RNA 小RNA 基因
作者
Massimo La Rosa,Antonino Fiannaca,Isabella Mendolia,Laura La Paglia,Alfonso Urso
出处
期刊:Computational and structural biotechnology journal [Elsevier BV]
卷期号:27: 1023-1033
标识
DOI:10.1016/j.csbj.2025.03.014
摘要

Small nucleolar RNAs (snoRNAs) play essential roles in various cellular processes, and their associations with diseases are increasingly recognized. Identifying these snoRNA-disease relationships is critical for advancing our understanding of their functional roles and potential therapeutic implications. This work presents a novel approach, called GL4SDA, to predict snoRNA-disease associations using Graph Neural Networks (GNN) and Large Language Models. Our methodology leverages the unique strengths of heterogeneous graph structures to model complex biological interactions. Differently from existing methods, we define a set of features able to capture deeper information content related to the inner attributes of both snoRNAs and diseases and design a GNN model based on highly performing layers, which can maximize results on this representation. We consider snoRNA secondary structures and disease embeddings derived from large language models to obtain snoRNAs and disease node features, respectively. By combining structural features of snoRNAs with rich semantic embeddings of diseases, we construct a feature-rich graph representation that improves the predictive performance of our model. We evaluate our approach using different architectures that exploit the capabilities of many graph convolutional layers and compare the results with three other state-of-the-art graph-based predictors. GL4SDA demonstrates improved scores in link prediction tasks and demonstrates its potential implication as a tool for exploring snoRNA-disease relationships. We also validate our findings through biological case studies about cancer diseases, highlighting the practical application of our method in real-world scenarios and obtaining the most important snoRNA features using explainable artificial intelligence methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尉迟剑心完成签到,获得积分10
2秒前
2秒前
ninomi发布了新的文献求助10
4秒前
寒雨发布了新的文献求助30
5秒前
6秒前
7秒前
arsenal发布了新的文献求助10
7秒前
10秒前
qks完成签到 ,获得积分10
10秒前
胡十一发布了新的文献求助10
11秒前
morena应助超级李包包采纳,获得10
12秒前
ding应助最初采纳,获得10
12秒前
科研通AI2S应助Denmark采纳,获得10
13秒前
大红先生发布了新的文献求助10
14秒前
龙龙发布了新的文献求助10
14秒前
15秒前
小二郎应助闪闪的绮波采纳,获得10
16秒前
彭于晏应助王羿采纳,获得10
16秒前
舒适的天奇完成签到 ,获得积分10
17秒前
左彦完成签到,获得积分10
17秒前
CipherSage应助苗条的时光采纳,获得10
17秒前
luna完成签到 ,获得积分10
19秒前
22秒前
领导范儿应助胡十一采纳,获得10
23秒前
24秒前
24秒前
24秒前
阿飞完成签到,获得积分10
24秒前
SciGPT应助科研迪采纳,获得10
25秒前
动漫大师发布了新的文献求助10
25秒前
务实青筠完成签到 ,获得积分10
26秒前
cx发布了新的文献求助10
26秒前
26秒前
pluto应助快乐小行星采纳,获得60
27秒前
pluto应助快乐小行星采纳,获得60
27秒前
yk完成签到 ,获得积分10
27秒前
雨碎寒江完成签到 ,获得积分10
27秒前
大模型应助leoMD采纳,获得10
29秒前
xinlei2023完成签到 ,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3678701
求助须知:如何正确求助?哪些是违规求助? 3231971
关于积分的说明 9800310
捐赠科研通 2943142
什么是DOI,文献DOI怎么找? 1613721
邀请新用户注册赠送积分活动 761830
科研通“疑难数据库(出版商)”最低求助积分说明 737087