Inversion Framework of Reservoir Parameters Based on Deep Autoregressive Surrogate and Continual Learning Strategy

自回归模型 计算机科学 储层模拟 替代模型 反演(地质) 油藏计算 人工智能 数据挖掘 人工神经网络 机器学习 卷积神经网络 算法 循环神经网络 数学优化 工程类 地质学 统计 数学 石油工程 构造盆地 古生物学
作者
Kai Zhang,Wenhao Fu,Jinding Zhang,Wensheng Zhou,Chen Liu,Piyang Liu,Liming Zhang,Xia Yan,Yongfei Yang,Hai Sun,Jun Yao
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:28 (05): 2223-2239 被引量:4
标识
DOI:10.2118/215821-pa
摘要

Summary History matching is a crucial process that enables the calibration of uncertain parameters of the numerical model to obtain an acceptable match between simulated and observed historical data. However, the implementation of the history-matching algorithm is usually based on iteration, which is a computationally expensive process due to the numerous runs of the simulation. To address this challenge, we propose a surrogate model for simulation based on an autoregressive model combined with a convolutional gated recurrent unit (ConvGRU). The proposed ConvGRU-based autoregressive neural network (ConvGRU-AR-Net) can accurately predict state maps (such as saturation maps) based on spatial and vector data (such as permeability and relative permeability, respectively) in an end-to-end fashion. Furthermore, history matching must be performed multiple times throughout the production cycle of the reservoir to fit the most recent production observations, making continual learning crucial. To enable the surrogate model to quickly learn recent data by transferring experience from previous tasks, an ensemble-based continual learning strategy is used. Together with the proposed neural network–based surrogate model, the randomized maximum likelihood (RML) is used to calibrate uncertain parameters. The proposed method is evaluated using 2D and 3D reservoir models. For both cases, the surrogate inversion framework successfully achieves a reasonable posterior distribution of reservoir parameters and provides a reliable assessment of the reservoir’s behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助安静严青采纳,获得10
1秒前
3秒前
zouyangmingjia完成签到,获得积分10
3秒前
4秒前
HJJHJH发布了新的文献求助20
4秒前
5秒前
文献杀手完成签到,获得积分10
5秒前
7秒前
鳗鱼小卷完成签到 ,获得积分10
7秒前
9秒前
从容万恶完成签到,获得积分10
10秒前
sjh发布了新的文献求助10
10秒前
朴实迎天完成签到,获得积分10
11秒前
12秒前
从容万恶发布了新的文献求助10
12秒前
12秒前
13秒前
HEIKU应助迷你的小兔子采纳,获得10
14秒前
15秒前
15秒前
兰格格完成签到,获得积分10
16秒前
汉堡包应助研友_n2Bkrn采纳,获得30
18秒前
田様应助DavidWebb采纳,获得10
18秒前
ding应助冷酷的河马采纳,获得10
19秒前
19秒前
dnmd完成签到,获得积分10
19秒前
直率向薇发布了新的文献求助20
19秒前
20秒前
menyu完成签到,获得积分10
21秒前
yatou5651发布了新的文献求助30
21秒前
Auston_zhong应助lym54采纳,获得10
22秒前
Hygge完成签到,获得积分10
22秒前
爱卿5271发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
勤奋冰烟完成签到,获得积分10
23秒前
mmmm发布了新的文献求助10
25秒前
Silence发布了新的文献求助10
26秒前
小二郎应助Sunnig盈采纳,获得10
26秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3683401
求助须知:如何正确求助?哪些是违规求助? 3234781
关于积分的说明 9816484
捐赠科研通 2946381
什么是DOI,文献DOI怎么找? 1615550
邀请新用户注册赠送积分活动 763027
科研通“疑难数据库(出版商)”最低求助积分说明 737643