Role of Heat Release from Inter-Electrode Chemical Crosstalk in Thermal Runaway Propagation Characteristics of Lithium-Ion Battery Modules

热失控 放热反应 分离器(采油) 材料科学 阳极 阴极 核工程 发热 热的 锂离子电池 过热(电) 电池(电) 电极 电气工程 机械 化学 热力学 功率(物理) 工程类 物理 物理化学
作者
Avijit Karmakar,Hanwei Zhou,Partha P. Mukherjee
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (1): 78-78
标识
DOI:10.1149/ma2022-02178mtgabs
摘要

While lithium-ion batteries are continually increasing in energy and power density, thermal safety still remains a significant concern. In some thermal abuse scenarios, thermal runaway can be triggered by the exothermic reactions from inter-electrode chemical crosstalk between the cathode and the anode without an internal short circuit. Under these circumstances, the thermal runaway temperature is lower than the separator's thermal shrinkage temperature, implying that the cell's catastrophic thermal runaway occurs without a large-scale short circuit produced by separator failure. These cell failures must be managed such that the neighboring cells in a battery module are not affected, a phenomenon known as thermal runaway propagation. In the present work, we employed a high-resolution cell-level thermal runaway model constructed from the accelerating rate calorimetry data of a commercial Li-ion cell to characterize the cell-to-cell thermal runaway propagation behavior for a basic square arrangement of lithium-ion battery module connected by tabs. We determined safe practices under the effects of different ambient conditions, inter-cell spacing, trigger cell location, and external heating power. Additionally, we have identified the critical pathways for the thermal runaway propagation in the battery module and quantified their statistical distribution in terms of the thermal runaway propagation speed, heat release from exothermic reactions, and heat dissipation to the surroundings. The findings from the study are believed to be of immediate relevance for the safer design of lithium-ion battery packs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tanyunjuan完成签到,获得积分20
2秒前
脑洞疼应助JY采纳,获得10
2秒前
2秒前
共享精神应助qqq159753采纳,获得10
3秒前
科研果完成签到,获得积分10
3秒前
韩豆乐发布了新的文献求助10
4秒前
4秒前
5秒前
阿白完成签到,获得积分10
5秒前
欣欣向荣完成签到,获得积分10
6秒前
6秒前
小曲同学完成签到,获得积分10
7秒前
小文子发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
tong完成签到,获得积分10
8秒前
10秒前
10秒前
Elaine应助maofeng采纳,获得10
10秒前
10秒前
完美世界应助Zhang采纳,获得10
10秒前
12秒前
DKY驳回了小蘑菇应助
12秒前
小土豆完成签到,获得积分10
12秒前
韩豆乐完成签到,获得积分10
13秒前
13秒前
Jeffny完成签到 ,获得积分10
14秒前
隔壁老璇发布了新的文献求助10
15秒前
16秒前
17秒前
清璃发布了新的文献求助10
17秒前
17秒前
17秒前
蔚然无尽蓝完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
开朗的蚂蚁完成签到,获得积分10
19秒前
Zx_1993应助叉烧饭采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265