周围神经
对偶(语法数字)
胶粘剂
粘附
医学
材料科学
解剖
图层(电子)
文学类
艺术
复合材料
作者
Wen Xue,Wen Shi,Mitchell Kuss,Yunfan Kong,Olawale A. Alimi,Hanjun Wang,Dominick J. DiMaio,Cunjiang Yu,Bin Duan
标识
DOI:10.1002/adfm.202209971
摘要
Abstract Peripheral nerve transection has a high prevalence and results in functional loss of affected limbs. The current clinical treatment using suture anastomosis significantly limits nerve recovery due to severe inflammation, secondary damage, and fibrosis. Fibrin glue, a commercial nerve adhesive as an alternative, avoids secondary damage but suffers from poor adhesion strength. To address their limitations, a highly efficacious nerve adhesive based on dual‐cross‐linking of dopamine‐isothiocyanate modified hyaluronic acid and decellularized nerve matrix is reportedr. This dual‐network nerve adhesive (DNNA) shows controllable gelation behaviors feasible for surgical applications, robust adhesion strength, and promotes axonal outgrowth in vitro. The in vivo therapeutic efficacy is tested using a rat‐based sciatic nerve transection model. The DNNA decreases fibrosis and accelerates axon/myelin debris clearance at 10 days post‐surgery, compared to suture and commercial fibrin glue treatments. At 10 weeks post‐surgery, the strong adhesion and bioactivity allow DNNA to significantly decrease intraneural inflammation and fibrosis, enhance axon connection and remyelination, aid motor and sensory function recovery, as well as improve muscle contraction, compared to suture and fibrin treatments. Overall, this dual‐network hydrogel with robust adhesion provides a rapid and highly efficacious nerve transection treatment to facilitate nerve repair and neuromuscular function recovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI