Setting up of a machine learning algorithm for the identification of severe liver fibrosis profile in the general US population cohort

算法 医学 人口 计算机科学 机器学习 肝病 人工智能 内科学 环境卫生
作者
Samir Hassoun,Chiara Bruckmann,Stefano Ciardullo,Gianluca Perseghin,Francesca Di Gaudio,Francesco Broccolo
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:170: 104932-104932 被引量:7
标识
DOI:10.1016/j.ijmedinf.2022.104932
摘要

The progress of digital transformation in clinical practice opens the door to transforming the current clinical line for liver disease diagnosis from a late-stage diagnosis approach to an early-stage based one. Early diagnosis of liver fibrosis can prevent the progression of the disease and decrease liver-related morbidity and mortality. We developed here a machine learning (ML) algorithm containing standard parameters that can identify liver fibrosis in the general US population. Starting from a public database (National Health and Nutrition Examination Survey, NHANES), representative of the American population with 7265 eligible subjects (control population n = 6828, with Fibroscan values E < 9.7 KPa; target population n = 437 with Fibroscan values E ≥ 9.7 KPa), we set up an SVM algorithm able to discriminate for individuals with liver fibrosis among the general US population. The algorithm set up involved the removal of missing data and a sampling optimization step to managing the data imbalance (only ∼ 5 % of the dataset is the target population). For the feature selection, we performed an unbiased analysis, starting from 33 clinical, anthropometric, and biochemical parameters regardless of their previous application as biomarkers of liver diseases. Through PCA analysis, we identified the 26 more significant features and then used them to set up a sampling method on an SVM algorithm. The best sampling technique to manage the data imbalance was found to be oversampling through the SMOTE-NC. For final model validation, we utilized a subset of 300 individuals (150 with liver fibrosis and 150 controls), subtracted from the main dataset prior to sampling. Performances were evaluated on multiple independent runs. We provide proof of concept of an ML clinical decision support tool for liver fibrosis diagnosis in the general US population. Though the presented ML model represents at this stage only a prototype, in the future, it might be implemented and potentially applied to program broad screenings for liver fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助平淡南霜采纳,获得10
1秒前
wanci应助小小爱吃百香果采纳,获得10
1秒前
2秒前
2秒前
2秒前
4秒前
我是站长才怪应助xg采纳,获得10
4秒前
decimalpoint完成签到 ,获得积分10
6秒前
Benliu发布了新的文献求助20
6秒前
6秒前
Carol完成签到,获得积分10
6秒前
sw98318发布了新的文献求助10
7秒前
wang1090完成签到,获得积分10
7秒前
奋斗的许婷2完成签到,获得积分10
7秒前
7秒前
8秒前
hll完成签到,获得积分20
8秒前
阳yang发布了新的文献求助10
8秒前
9秒前
wang1090发布了新的文献求助30
10秒前
呜呜呜呜完成签到,获得积分10
10秒前
10秒前
Riki发布了新的文献求助10
11秒前
88发布了新的文献求助10
11秒前
12秒前
充电宝应助zfy采纳,获得10
13秒前
sak完成签到,获得积分10
14秒前
Shuo Yang发布了新的文献求助20
14秒前
呜呜呜呜发布了新的文献求助10
14秒前
在水一方应助hhzz采纳,获得10
14秒前
旧是完成签到 ,获得积分10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
杨小胖完成签到 ,获得积分10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
mm发布了新的文献求助10
16秒前
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
shouyu29应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
RC_Wang应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808