已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Setting up of a machine learning algorithm for the identification of severe liver fibrosis profile in the general US population cohort

算法 医学 人口 计算机科学 机器学习 肝病 人工智能 内科学 环境卫生
作者
Samir Hassoun,Chiara Bruckmann,Stefano Ciardullo,Gianluca Perseghin,Francesca Di Gaudio,Francesco Broccolo
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:170: 104932-104932 被引量:7
标识
DOI:10.1016/j.ijmedinf.2022.104932
摘要

The progress of digital transformation in clinical practice opens the door to transforming the current clinical line for liver disease diagnosis from a late-stage diagnosis approach to an early-stage based one. Early diagnosis of liver fibrosis can prevent the progression of the disease and decrease liver-related morbidity and mortality. We developed here a machine learning (ML) algorithm containing standard parameters that can identify liver fibrosis in the general US population. Starting from a public database (National Health and Nutrition Examination Survey, NHANES), representative of the American population with 7265 eligible subjects (control population n = 6828, with Fibroscan values E < 9.7 KPa; target population n = 437 with Fibroscan values E ≥ 9.7 KPa), we set up an SVM algorithm able to discriminate for individuals with liver fibrosis among the general US population. The algorithm set up involved the removal of missing data and a sampling optimization step to managing the data imbalance (only ∼ 5 % of the dataset is the target population). For the feature selection, we performed an unbiased analysis, starting from 33 clinical, anthropometric, and biochemical parameters regardless of their previous application as biomarkers of liver diseases. Through PCA analysis, we identified the 26 more significant features and then used them to set up a sampling method on an SVM algorithm. The best sampling technique to manage the data imbalance was found to be oversampling through the SMOTE-NC. For final model validation, we utilized a subset of 300 individuals (150 with liver fibrosis and 150 controls), subtracted from the main dataset prior to sampling. Performances were evaluated on multiple independent runs. We provide proof of concept of an ML clinical decision support tool for liver fibrosis diagnosis in the general US population. Though the presented ML model represents at this stage only a prototype, in the future, it might be implemented and potentially applied to program broad screenings for liver fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
言辞完成签到,获得积分10
1秒前
2秒前
lingo完成签到 ,获得积分10
3秒前
Curtley发布了新的文献求助10
3秒前
B4完成签到,获得积分10
5秒前
VVV发布了新的文献求助10
10秒前
含糊的无声完成签到 ,获得积分10
11秒前
牛蛙丶丶完成签到,获得积分10
13秒前
大羊完成签到 ,获得积分10
14秒前
Xu完成签到 ,获得积分10
14秒前
诚心山芙发布了新的文献求助10
16秒前
Viiigo完成签到,获得积分10
17秒前
Aman完成签到,获得积分10
18秒前
21秒前
纯真沛儿发布了新的文献求助10
22秒前
烟花应助VVV采纳,获得10
23秒前
亭2007完成签到 ,获得积分10
25秒前
抹茶芝士酸奶完成签到,获得积分10
28秒前
欣慰的铭完成签到,获得积分20
29秒前
30秒前
30秒前
31秒前
伯云完成签到,获得积分10
32秒前
ling发布了新的文献求助10
35秒前
RR发布了新的文献求助10
35秒前
欣慰的铭发布了新的文献求助10
35秒前
冷静白亦完成签到,获得积分10
37秒前
灵梦柠檬酸完成签到,获得积分10
39秒前
Lucas应助酷酷的书雁采纳,获得30
39秒前
everlasting发布了新的文献求助10
40秒前
就是梦而已完成签到,获得积分10
41秒前
42秒前
冷静白亦发布了新的文献求助10
42秒前
韦鑫龙完成签到,获得积分10
42秒前
年年有余完成签到,获得积分10
43秒前
HHH发布了新的文献求助10
43秒前
在水一方应助纯真沛儿采纳,获得10
44秒前
etzel关注了科研通微信公众号
44秒前
江氏巨颏虎完成签到,获得积分20
45秒前
鬼笔环肽完成签到 ,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253138
求助须知:如何正确求助?哪些是违规求助? 4416657
关于积分的说明 13750270
捐赠科研通 4288890
什么是DOI,文献DOI怎么找? 2353183
邀请新用户注册赠送积分活动 1349892
关于科研通互助平台的介绍 1309642