已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Setting up of a machine learning algorithm for the identification of severe liver fibrosis profile in the general US population cohort

算法 医学 人口 计算机科学 机器学习 肝病 人工智能 内科学 环境卫生
作者
Samir Hassoun,Chiara Bruckmann,Stefano Ciardullo,Gianluca Perseghin,Francesca Di Gaudio,Francesco Broccolo
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:170: 104932-104932 被引量:7
标识
DOI:10.1016/j.ijmedinf.2022.104932
摘要

The progress of digital transformation in clinical practice opens the door to transforming the current clinical line for liver disease diagnosis from a late-stage diagnosis approach to an early-stage based one. Early diagnosis of liver fibrosis can prevent the progression of the disease and decrease liver-related morbidity and mortality. We developed here a machine learning (ML) algorithm containing standard parameters that can identify liver fibrosis in the general US population. Starting from a public database (National Health and Nutrition Examination Survey, NHANES), representative of the American population with 7265 eligible subjects (control population n = 6828, with Fibroscan values E < 9.7 KPa; target population n = 437 with Fibroscan values E ≥ 9.7 KPa), we set up an SVM algorithm able to discriminate for individuals with liver fibrosis among the general US population. The algorithm set up involved the removal of missing data and a sampling optimization step to managing the data imbalance (only ∼ 5 % of the dataset is the target population). For the feature selection, we performed an unbiased analysis, starting from 33 clinical, anthropometric, and biochemical parameters regardless of their previous application as biomarkers of liver diseases. Through PCA analysis, we identified the 26 more significant features and then used them to set up a sampling method on an SVM algorithm. The best sampling technique to manage the data imbalance was found to be oversampling through the SMOTE-NC. For final model validation, we utilized a subset of 300 individuals (150 with liver fibrosis and 150 controls), subtracted from the main dataset prior to sampling. Performances were evaluated on multiple independent runs. We provide proof of concept of an ML clinical decision support tool for liver fibrosis diagnosis in the general US population. Though the presented ML model represents at this stage only a prototype, in the future, it might be implemented and potentially applied to program broad screenings for liver fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
许晴完成签到 ,获得积分10
2秒前
Fjj完成签到,获得积分10
4秒前
啾啾发布了新的文献求助100
4秒前
moiaoh完成签到,获得积分10
6秒前
6秒前
8秒前
12秒前
科研通AI5应助啾啾采纳,获得10
14秒前
胡一刀完成签到,获得积分10
15秒前
dreamboat完成签到,获得积分10
16秒前
16秒前
梁梁完成签到 ,获得积分10
18秒前
18秒前
沉静乾发布了新的文献求助10
18秒前
19秒前
21秒前
梁海萍发布了新的文献求助10
21秒前
EKo完成签到,获得积分10
22秒前
情怀应助zjx采纳,获得10
22秒前
畅快枕头完成签到 ,获得积分0
23秒前
SciHub完成签到 ,获得积分10
23秒前
草莓熊1215完成签到 ,获得积分10
24秒前
彭于晏应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
25秒前
爆米花应助科研通管家采纳,获得30
25秒前
李文豪发布了新的文献求助10
25秒前
唐泽雪穗发布了新的文献求助100
27秒前
28秒前
山山完成签到 ,获得积分10
31秒前
31秒前
哲000完成签到 ,获得积分10
32秒前
土豆小胖子完成签到,获得积分10
32秒前
CC完成签到 ,获得积分10
33秒前
zjx完成签到,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925756
求助须知:如何正确求助?哪些是违规求助? 4195911
关于积分的说明 13031268
捐赠科研通 3967492
什么是DOI,文献DOI怎么找? 2174627
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101628