Setting up of a machine learning algorithm for the identification of severe liver fibrosis profile in the general US population cohort

算法 医学 人口 计算机科学 机器学习 肝病 人工智能 内科学 环境卫生
作者
Samir Hassoun,Chiara Bruckmann,Stefano Ciardullo,Gianluca Perseghin,Francesca Di Gaudio,Francesco Broccolo
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:170: 104932-104932 被引量:7
标识
DOI:10.1016/j.ijmedinf.2022.104932
摘要

The progress of digital transformation in clinical practice opens the door to transforming the current clinical line for liver disease diagnosis from a late-stage diagnosis approach to an early-stage based one. Early diagnosis of liver fibrosis can prevent the progression of the disease and decrease liver-related morbidity and mortality. We developed here a machine learning (ML) algorithm containing standard parameters that can identify liver fibrosis in the general US population. Starting from a public database (National Health and Nutrition Examination Survey, NHANES), representative of the American population with 7265 eligible subjects (control population n = 6828, with Fibroscan values E < 9.7 KPa; target population n = 437 with Fibroscan values E ≥ 9.7 KPa), we set up an SVM algorithm able to discriminate for individuals with liver fibrosis among the general US population. The algorithm set up involved the removal of missing data and a sampling optimization step to managing the data imbalance (only ∼ 5 % of the dataset is the target population). For the feature selection, we performed an unbiased analysis, starting from 33 clinical, anthropometric, and biochemical parameters regardless of their previous application as biomarkers of liver diseases. Through PCA analysis, we identified the 26 more significant features and then used them to set up a sampling method on an SVM algorithm. The best sampling technique to manage the data imbalance was found to be oversampling through the SMOTE-NC. For final model validation, we utilized a subset of 300 individuals (150 with liver fibrosis and 150 controls), subtracted from the main dataset prior to sampling. Performances were evaluated on multiple independent runs. We provide proof of concept of an ML clinical decision support tool for liver fibrosis diagnosis in the general US population. Though the presented ML model represents at this stage only a prototype, in the future, it might be implemented and potentially applied to program broad screenings for liver fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助博修采纳,获得10
刚刚
1秒前
1秒前
科研专家发布了新的文献求助10
2秒前
洁净的代容完成签到,获得积分10
2秒前
奋斗的伟宸完成签到,获得积分10
3秒前
张杰完成签到,获得积分10
4秒前
4秒前
正直千兰发布了新的文献求助10
5秒前
Lisa发布了新的文献求助10
6秒前
7秒前
大力云朵发布了新的文献求助20
7秒前
李爱国应助CXS采纳,获得10
8秒前
张杰发布了新的文献求助10
8秒前
DrLee完成签到,获得积分10
9秒前
12秒前
15秒前
15秒前
来了完成签到,获得积分10
17秒前
粱忆寒发布了新的文献求助10
19秒前
20秒前
麻雀发布了新的文献求助30
20秒前
20秒前
大脑袋应助感动的念双采纳,获得30
22秒前
www完成签到 ,获得积分10
24秒前
隐形从梦完成签到 ,获得积分20
25秒前
CodeCraft应助Jero采纳,获得10
25秒前
26秒前
Zzzzzzz完成签到,获得积分10
26秒前
博修发布了新的文献求助10
27秒前
kingking完成签到,获得积分10
27秒前
29秒前
十二完成签到 ,获得积分10
30秒前
31秒前
QYF发布了新的文献求助10
31秒前
上官若男应助123采纳,获得10
32秒前
32秒前
脑洞疼应助吗喽采纳,获得10
33秒前
小蘑菇应助ANG采纳,获得10
33秒前
李健应助灯灯采纳,获得10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382