Setting up of a machine learning algorithm for the identification of severe liver fibrosis profile in the general US population cohort

算法 医学 人口 计算机科学 机器学习 肝病 人工智能 内科学 环境卫生
作者
Samir Hassoun,Chiara Bruckmann,Stefano Ciardullo,Gianluca Perseghin,Francesca Di Gaudio,Francesco Broccolo
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:170: 104932-104932 被引量:7
标识
DOI:10.1016/j.ijmedinf.2022.104932
摘要

The progress of digital transformation in clinical practice opens the door to transforming the current clinical line for liver disease diagnosis from a late-stage diagnosis approach to an early-stage based one. Early diagnosis of liver fibrosis can prevent the progression of the disease and decrease liver-related morbidity and mortality. We developed here a machine learning (ML) algorithm containing standard parameters that can identify liver fibrosis in the general US population. Starting from a public database (National Health and Nutrition Examination Survey, NHANES), representative of the American population with 7265 eligible subjects (control population n = 6828, with Fibroscan values E < 9.7 KPa; target population n = 437 with Fibroscan values E ≥ 9.7 KPa), we set up an SVM algorithm able to discriminate for individuals with liver fibrosis among the general US population. The algorithm set up involved the removal of missing data and a sampling optimization step to managing the data imbalance (only ∼ 5 % of the dataset is the target population). For the feature selection, we performed an unbiased analysis, starting from 33 clinical, anthropometric, and biochemical parameters regardless of their previous application as biomarkers of liver diseases. Through PCA analysis, we identified the 26 more significant features and then used them to set up a sampling method on an SVM algorithm. The best sampling technique to manage the data imbalance was found to be oversampling through the SMOTE-NC. For final model validation, we utilized a subset of 300 individuals (150 with liver fibrosis and 150 controls), subtracted from the main dataset prior to sampling. Performances were evaluated on multiple independent runs. We provide proof of concept of an ML clinical decision support tool for liver fibrosis diagnosis in the general US population. Though the presented ML model represents at this stage only a prototype, in the future, it might be implemented and potentially applied to program broad screenings for liver fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kathy发布了新的文献求助10
1秒前
共享精神应助久久采纳,获得10
1秒前
QQQQ发布了新的文献求助10
2秒前
111完成签到,获得积分20
2秒前
HonamC完成签到,获得积分10
3秒前
3秒前
少年旭完成签到,获得积分10
3秒前
3秒前
万能图书馆应助郑石采纳,获得10
5秒前
AIA7发布了新的文献求助10
5秒前
UU发布了新的文献求助10
7秒前
Qing完成签到,获得积分10
7秒前
drew发布了新的文献求助10
8秒前
9秒前
10秒前
CR7完成签到,获得积分10
10秒前
11秒前
Ava应助老实的栾采纳,获得10
11秒前
骆驼林子完成签到,获得积分10
12秒前
ybma完成签到 ,获得积分10
14秒前
15秒前
仁爱吐司完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
tangtang发布了新的文献求助10
18秒前
阿乐完成签到,获得积分10
19秒前
19秒前
pp完成签到,获得积分20
19秒前
阿乐发布了新的文献求助10
22秒前
f15关注了科研通微信公众号
22秒前
lyc是傻狗完成签到,获得积分10
23秒前
23秒前
24秒前
pp发布了新的文献求助10
25秒前
25秒前
QQQQ完成签到,获得积分10
27秒前
科研通AI2S应助999采纳,获得10
27秒前
老实的栾发布了新的文献求助10
28秒前
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269766
求助须知:如何正确求助?哪些是违规求助? 2909409
关于积分的说明 8348865
捐赠科研通 2579686
什么是DOI,文献DOI怎么找? 1402985
科研通“疑难数据库(出版商)”最低求助积分说明 655595
邀请新用户注册赠送积分活动 634856