Setting up of a machine learning algorithm for the identification of severe liver fibrosis profile in the general US population cohort

算法 医学 人口 计算机科学 机器学习 肝病 人工智能 内科学 环境卫生
作者
Samir Hassoun,Chiara Bruckmann,Stefano Ciardullo,Gianluca Perseghin,Francesca Di Gaudio,Francesco Broccolo
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:170: 104932-104932 被引量:7
标识
DOI:10.1016/j.ijmedinf.2022.104932
摘要

The progress of digital transformation in clinical practice opens the door to transforming the current clinical line for liver disease diagnosis from a late-stage diagnosis approach to an early-stage based one. Early diagnosis of liver fibrosis can prevent the progression of the disease and decrease liver-related morbidity and mortality. We developed here a machine learning (ML) algorithm containing standard parameters that can identify liver fibrosis in the general US population. Starting from a public database (National Health and Nutrition Examination Survey, NHANES), representative of the American population with 7265 eligible subjects (control population n = 6828, with Fibroscan values E < 9.7 KPa; target population n = 437 with Fibroscan values E ≥ 9.7 KPa), we set up an SVM algorithm able to discriminate for individuals with liver fibrosis among the general US population. The algorithm set up involved the removal of missing data and a sampling optimization step to managing the data imbalance (only ∼ 5 % of the dataset is the target population). For the feature selection, we performed an unbiased analysis, starting from 33 clinical, anthropometric, and biochemical parameters regardless of their previous application as biomarkers of liver diseases. Through PCA analysis, we identified the 26 more significant features and then used them to set up a sampling method on an SVM algorithm. The best sampling technique to manage the data imbalance was found to be oversampling through the SMOTE-NC. For final model validation, we utilized a subset of 300 individuals (150 with liver fibrosis and 150 controls), subtracted from the main dataset prior to sampling. Performances were evaluated on multiple independent runs. We provide proof of concept of an ML clinical decision support tool for liver fibrosis diagnosis in the general US population. Though the presented ML model represents at this stage only a prototype, in the future, it might be implemented and potentially applied to program broad screenings for liver fibrosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nmeiko发布了新的文献求助10
1秒前
单薄的寻桃给单薄的寻桃的求助进行了留言
4秒前
6秒前
内向汽车完成签到,获得积分10
9秒前
可爱的函函应助文静人达采纳,获得10
18秒前
哭泣青烟完成签到 ,获得积分10
20秒前
明理如凡完成签到,获得积分20
20秒前
诚心八宝粥完成签到,获得积分10
22秒前
24秒前
27秒前
酷波er应助耍酷皮皮虾采纳,获得10
28秒前
英吉利25发布了新的文献求助10
29秒前
LDoll发布了新的文献求助10
34秒前
du完成签到 ,获得积分10
34秒前
35秒前
40秒前
Orange应助xuan采纳,获得10
41秒前
nmeiko完成签到,获得积分20
44秒前
xzgwbh完成签到,获得积分10
44秒前
科目三应助LDoll采纳,获得10
44秒前
46秒前
46秒前
浮游应助yiqi采纳,获得10
46秒前
wubinbin完成签到 ,获得积分10
46秒前
hjjjxxxx发布了新的文献求助30
49秒前
50秒前
不能吃了发布了新的文献求助10
50秒前
xuan发布了新的文献求助10
53秒前
hjjjxxxx完成签到,获得积分10
57秒前
nmeiko发布了新的文献求助10
58秒前
1分钟前
山屿发布了新的文献求助30
1分钟前
科研顺发布了新的文献求助10
1分钟前
AIDIN完成签到 ,获得积分10
1分钟前
1分钟前
ding应助Bismarck采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
科研顺完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538