Parameter estimation in a whole-brain network model of epilepsy: Comparison of parallel global optimization solvers

计算机科学 超参数 可扩展性 人工智能 机器学习 癫痫 集合(抽象数据类型) 标杆管理 水准点(测量) 校准 医学 统计 数学 大地测量学 营销 数据库 业务 程序设计语言 地理 精神科
作者
David R. Penas,Meysam Hashemi,Viktor Jirsa,Julio R. Banga
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:20 (7): e1011642-e1011642
标识
DOI:10.1371/journal.pcbi.1011642
摘要

The Virtual Epileptic Patient (VEP) refers to a computer-based representation of a patient with epilepsy that combines personalized anatomical data with dynamical models of abnormal brain activities. It is capable of generating spatio-temporal seizure patterns that resemble those recorded with invasive methods such as stereoelectro EEG data, allowing for the evaluation of clinical hypotheses before planning surgery. This study highlights the effectiveness of calibrating VEP models using a global optimization approach. The approach utilizes SaCeSS, a cooperative metaheuristic algorithm capable of parallel computation, to yield high-quality solutions without requiring excessive computational time. Through extensive benchmarking on synthetic data, our proposal successfully solved a set of different configurations of VEP models, demonstrating better scalability and superior performance against other parallel solvers. These results were further enhanced using a Bayesian optimization framework for hyperparameter tuning, with significant gains in terms of both accuracy and computational cost. Additionally, we added a scalable uncertainty quantification phase after model calibration, and used it to assess the variability in estimated parameters across different problems. Overall, this study has the potential to improve the estimation of pathological brain areas in drug-resistant epilepsy, thereby to inform the clinical decision-making process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逝水无痕发布了新的文献求助10
3秒前
3秒前
3秒前
BINBIN完成签到 ,获得积分10
4秒前
6秒前
王慧康完成签到,获得积分10
6秒前
FashionBoy应助地狱跳跳虎采纳,获得10
10秒前
大个应助花凉采纳,获得10
11秒前
刻苦的剑心完成签到,获得积分20
11秒前
12秒前
脑洞疼应助月亮是甜的采纳,获得10
12秒前
丘比特应助七七采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
14秒前
FashionBoy应助小马采纳,获得10
15秒前
無羁发布了新的文献求助10
16秒前
科研通AI2S应助聪明煎饼采纳,获得30
17秒前
17秒前
17秒前
停停走走发布了新的文献求助10
18秒前
18秒前
18秒前
everglow应助guozizi采纳,获得50
18秒前
22秒前
22秒前
彭于晏应助停停走走采纳,获得10
22秒前
22秒前
23秒前
23秒前
23秒前
豆豆完成签到,获得积分10
24秒前
xxc完成签到,获得积分10
24秒前
everglow应助如果多年后采纳,获得10
25秒前
猛男航完成签到,获得积分10
26秒前
我是老大应助qujue001采纳,获得10
27秒前
27秒前
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644