Screening and Predictive Biomarkers for Down Syndrome Through Amniotic Fluid Metabolomics

代谢组学 羊水 谷氨酰胺 代谢组 生物 医学 生物信息学 内科学 胎儿 生物化学 怀孕 氨基酸 遗传学
作者
Li‐Chao Zhang,Xiaofan Yang,Yeqing Jiang,Zhen Yang,Lulu Yan,Yuxin Zhang,Qiong Li,Ling Tian,Juan Cao,Ying Zhou,Shanshan Wu,Danyan Zhuang,C Chen,Haibo Li
出处
期刊:Prenatal Diagnosis [Wiley]
标识
DOI:10.1002/pd.6693
摘要

ABSTRACT Background Down syndrome (DS) is a congenital disorder caused by the presence of an extra copy of all or part of chromosome 21. It is characterized by significant intellectual disability, distinct facial features, and growth and developmental challenges. The utilization of metabolomics to analyze specific metabolic markers in maternal amniotic fluid may provide innovative tools and screening methods for investigating the early pathophysiology of trisomy 21 at the functional level. Methods Amniotic fluid samples were obtained via amniocentesis from 57 pregnancies with DS and 55 control pregnancies between 17 3/7 and 24 0/7 weeks of gestation. The targeted metabolomics focused on 34 organic acids, 17 amino acids, and 5 acylcarnitine metabolites. The untargeted metabolomics analysis concentrated on lipid profiles and included 602 metabolites that met quality control standards. Principal Component Analysis, Orthogonal Partial Least Squares Discriminant Analysis (OPLS‐DA), and false discovery rate (FDR) adjustments were applied. MetaboAnalystR 5.0 was used to perform the metabolic pathway analysis on the identified differential metabolites. Results Fifty differential metabolites, including L‐glutamine, eight organic acids, and 41 lipids, were significantly altered in DS based on three criteria: VIP > 1 in the OPLS‐DA model, FDR‐adjusted p ‐value < 0.05, and |log 2 FC| > log 2 (1.5) from a volcano plot of all detected metabolites. An analysis of 212 differential metabolites, selected from both targeted and untargeted approaches (VIP > 1 in the OPLS‐DA model and FDR‐adjusted p ‐value < 0.05), revealed significant changes in nine metabolic pathways. Fourteen key metabolites were identified to establish a screening model for DS, achieving an area under the curve of 1.00. Conclusions Our results underscore the potential of metabolomics approaches in identifying concise and reliable biomarker combinations that demonstrate promising screening performance in DS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunshine发布了新的文献求助10
刚刚
lxf448发布了新的文献求助10
1秒前
曲线发布了新的文献求助10
1秒前
1秒前
娇气的天亦完成签到,获得积分10
2秒前
2秒前
3秒前
shitoujie完成签到,获得积分10
3秒前
社恐Forza完成签到,获得积分10
3秒前
3秒前
Jasper应助123采纳,获得10
4秒前
小小完成签到,获得积分10
5秒前
wewewew发布了新的文献求助10
7秒前
灵巧土豆发布了新的文献求助10
7秒前
哇哈哈哈哈哈完成签到,获得积分20
7秒前
桂花乌龙完成签到,获得积分10
7秒前
西屋发布了新的文献求助10
7秒前
昏睡的眼神完成签到 ,获得积分10
8秒前
派大星完成签到,获得积分10
8秒前
拓跋傲薇完成签到,获得积分10
9秒前
Cupid完成签到,获得积分10
9秒前
lxf448完成签到,获得积分10
9秒前
11秒前
舒心的茗完成签到,获得积分10
11秒前
惊蛰时分听春雷完成签到,获得积分10
12秒前
繁荣的映雁完成签到,获得积分10
12秒前
不染尘完成签到,获得积分10
12秒前
Nancy完成签到,获得积分10
13秒前
追寻的安南完成签到 ,获得积分10
13秒前
深情安青应助凶狠的猎豹采纳,获得10
13秒前
lll完成签到,获得积分10
14秒前
陈糯米完成签到,获得积分10
14秒前
jie完成签到 ,获得积分10
14秒前
舒适静曼完成签到,获得积分10
15秒前
神明发布了新的文献求助10
15秒前
16秒前
emo完成签到,获得积分10
16秒前
乐乐应助wewewew采纳,获得10
16秒前
Archer完成签到,获得积分10
16秒前
congjia完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784882
关于积分的说明 7769151
捐赠科研通 2440425
什么是DOI,文献DOI怎么找? 1297383
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792