Screening and Predictive Biomarkers for Down Syndrome Through Amniotic Fluid Metabolomics

代谢组学 羊水 谷氨酰胺 代谢组 生物 医学 生物信息学 内科学 胎儿 生物化学 怀孕 氨基酸 遗传学
作者
Li‐Chao Zhang,Xiaofan Yang,Yeqing Jiang,Zhen Yang,Lulu Yan,Yuxin Zhang,Qiong Li,Ling Tian,Juan Cao,Ying Zhou,Shanshan Wu,Danyan Zhuang,C Chen,Haibo Li
出处
期刊:Prenatal Diagnosis [Wiley]
被引量:2
标识
DOI:10.1002/pd.6693
摘要

ABSTRACT Background Down syndrome (DS) is a congenital disorder caused by the presence of an extra copy of all or part of chromosome 21. It is characterized by significant intellectual disability, distinct facial features, and growth and developmental challenges. The utilization of metabolomics to analyze specific metabolic markers in maternal amniotic fluid may provide innovative tools and screening methods for investigating the early pathophysiology of trisomy 21 at the functional level. Methods Amniotic fluid samples were obtained via amniocentesis from 57 pregnancies with DS and 55 control pregnancies between 17 3/7 and 24 0/7 weeks of gestation. The targeted metabolomics focused on 34 organic acids, 17 amino acids, and 5 acylcarnitine metabolites. The untargeted metabolomics analysis concentrated on lipid profiles and included 602 metabolites that met quality control standards. Principal Component Analysis, Orthogonal Partial Least Squares Discriminant Analysis (OPLS‐DA), and false discovery rate (FDR) adjustments were applied. MetaboAnalystR 5.0 was used to perform the metabolic pathway analysis on the identified differential metabolites. Results Fifty differential metabolites, including L‐glutamine, eight organic acids, and 41 lipids, were significantly altered in DS based on three criteria: VIP > 1 in the OPLS‐DA model, FDR‐adjusted p ‐value < 0.05, and |log 2 FC| > log 2 (1.5) from a volcano plot of all detected metabolites. An analysis of 212 differential metabolites, selected from both targeted and untargeted approaches (VIP > 1 in the OPLS‐DA model and FDR‐adjusted p ‐value < 0.05), revealed significant changes in nine metabolic pathways. Fourteen key metabolites were identified to establish a screening model for DS, achieving an area under the curve of 1.00. Conclusions Our results underscore the potential of metabolomics approaches in identifying concise and reliable biomarker combinations that demonstrate promising screening performance in DS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yi完成签到,获得积分10
1秒前
王继完成签到,获得积分10
1秒前
1秒前
卡片完成签到,获得积分10
3秒前
虚幻念寒完成签到 ,获得积分10
3秒前
胡思乱想完成签到,获得积分10
5秒前
6秒前
hahaha6789y完成签到,获得积分10
6秒前
cl完成签到,获得积分10
8秒前
sheep完成签到,获得积分10
9秒前
maybe完成签到,获得积分10
9秒前
秦含光完成签到,获得积分10
9秒前
Mo完成签到,获得积分10
9秒前
hahaha2完成签到,获得积分10
10秒前
spider534完成签到,获得积分10
10秒前
徐彬荣完成签到,获得积分10
10秒前
simon666完成签到,获得积分10
10秒前
BlueKitty完成签到,获得积分10
12秒前
Adamcssy19完成签到,获得积分10
13秒前
量子咸鱼K完成签到,获得积分10
13秒前
霡霂完成签到,获得积分10
13秒前
852应助科研通管家采纳,获得10
13秒前
13秒前
PaperCrane完成签到,获得积分10
13秒前
hahaha1完成签到,获得积分10
13秒前
surlamper完成签到,获得积分10
14秒前
曹广秀完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
雪雪完成签到 ,获得积分10
20秒前
狂野元枫完成签到 ,获得积分10
23秒前
lv完成签到,获得积分10
23秒前
乒坛巨人完成签到 ,获得积分0
24秒前
gqw3505完成签到,获得积分10
26秒前
呆萌冰彤完成签到 ,获得积分10
27秒前
松柏完成签到 ,获得积分10
31秒前
专注的水壶完成签到 ,获得积分10
35秒前
king完成签到 ,获得积分10
40秒前
笔墨纸砚完成签到 ,获得积分10
43秒前
Ilan完成签到,获得积分10
44秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418566
求助须知:如何正确求助?哪些是违规求助? 4534257
关于积分的说明 14143326
捐赠科研通 4450472
什么是DOI,文献DOI怎么找? 2441268
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410417