Screening and Predictive Biomarkers for Down Syndrome Through Amniotic Fluid Metabolomics

代谢组学 羊水 谷氨酰胺 代谢组 生物 医学 生物信息学 内科学 胎儿 生物化学 怀孕 氨基酸 遗传学
作者
Li‐Chao Zhang,Xiaofan Yang,Yeqing Jiang,Zhen Yang,Lulu Yan,Yuxin Zhang,Qiong Li,Ling Tian,Juan Cao,Ying Zhou,Shanshan Wu,Danyan Zhuang,C Chen,Haibo Li
出处
期刊:Prenatal Diagnosis [Wiley]
被引量:1
标识
DOI:10.1002/pd.6693
摘要

ABSTRACT Background Down syndrome (DS) is a congenital disorder caused by the presence of an extra copy of all or part of chromosome 21. It is characterized by significant intellectual disability, distinct facial features, and growth and developmental challenges. The utilization of metabolomics to analyze specific metabolic markers in maternal amniotic fluid may provide innovative tools and screening methods for investigating the early pathophysiology of trisomy 21 at the functional level. Methods Amniotic fluid samples were obtained via amniocentesis from 57 pregnancies with DS and 55 control pregnancies between 17 3/7 and 24 0/7 weeks of gestation. The targeted metabolomics focused on 34 organic acids, 17 amino acids, and 5 acylcarnitine metabolites. The untargeted metabolomics analysis concentrated on lipid profiles and included 602 metabolites that met quality control standards. Principal Component Analysis, Orthogonal Partial Least Squares Discriminant Analysis (OPLS‐DA), and false discovery rate (FDR) adjustments were applied. MetaboAnalystR 5.0 was used to perform the metabolic pathway analysis on the identified differential metabolites. Results Fifty differential metabolites, including L‐glutamine, eight organic acids, and 41 lipids, were significantly altered in DS based on three criteria: VIP > 1 in the OPLS‐DA model, FDR‐adjusted p ‐value < 0.05, and |log 2 FC| > log 2 (1.5) from a volcano plot of all detected metabolites. An analysis of 212 differential metabolites, selected from both targeted and untargeted approaches (VIP > 1 in the OPLS‐DA model and FDR‐adjusted p ‐value < 0.05), revealed significant changes in nine metabolic pathways. Fourteen key metabolites were identified to establish a screening model for DS, achieving an area under the curve of 1.00. Conclusions Our results underscore the potential of metabolomics approaches in identifying concise and reliable biomarker combinations that demonstrate promising screening performance in DS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucifer应助翔翔超人采纳,获得10
1秒前
1秒前
xiaofengche完成签到,获得积分10
2秒前
BZPL发布了新的文献求助10
2秒前
jiangyu_an完成签到,获得积分10
2秒前
平淡如天发布了新的文献求助10
2秒前
2秒前
2秒前
石时时完成签到,获得积分10
3秒前
李健的小迷弟应助wenjing采纳,获得10
4秒前
5秒前
糕糕发布了新的文献求助10
5秒前
Owen应助jess采纳,获得10
5秒前
learnerZ_2023完成签到,获得积分10
6秒前
彭于晏应助hohn采纳,获得10
6秒前
领导范儿应助Mong那粒沙采纳,获得10
6秒前
6秒前
6秒前
6秒前
haha发布了新的文献求助10
7秒前
充电宝应助虚幻元芹采纳,获得10
7秒前
ZYH完成签到,获得积分10
7秒前
7秒前
8秒前
活泼沛菡完成签到,获得积分20
8秒前
advance完成签到,获得积分10
8秒前
8秒前
传奇3应助永恒采纳,获得10
8秒前
科研通AI5应助UNIQ85采纳,获得10
8秒前
眭超阳完成签到 ,获得积分10
9秒前
king_creole完成签到,获得积分10
9秒前
cpli发布了新的文献求助30
9秒前
白河发布了新的文献求助10
9秒前
wjl发布了新的文献求助10
9秒前
9秒前
zsy完成签到,获得积分10
9秒前
情怀应助Mine采纳,获得10
9秒前
9秒前
漂亮采波发布了新的文献求助10
10秒前
康康发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560552
求助须知:如何正确求助?哪些是违规求助? 3986658
关于积分的说明 12343469
捐赠科研通 3657426
什么是DOI,文献DOI怎么找? 2014919
邀请新用户注册赠送积分活动 1049681
科研通“疑难数据库(出版商)”最低求助积分说明 937867