Screening and Predictive Biomarkers for Down Syndrome Through Amniotic Fluid Metabolomics

代谢组学 羊水 谷氨酰胺 代谢组 生物 医学 生物信息学 内科学 胎儿 生物化学 怀孕 氨基酸 遗传学
作者
Li‐Chao Zhang,Xiaofan Yang,Yeqing Jiang,Zhen Yang,Lulu Yan,Yuxin Zhang,Qiong Li,Ling Tian,Juan Cao,Ying Zhou,Shanshan Wu,Danyan Zhuang,C Chen,Haibo Li
出处
期刊:Prenatal Diagnosis [Wiley]
被引量:2
标识
DOI:10.1002/pd.6693
摘要

ABSTRACT Background Down syndrome (DS) is a congenital disorder caused by the presence of an extra copy of all or part of chromosome 21. It is characterized by significant intellectual disability, distinct facial features, and growth and developmental challenges. The utilization of metabolomics to analyze specific metabolic markers in maternal amniotic fluid may provide innovative tools and screening methods for investigating the early pathophysiology of trisomy 21 at the functional level. Methods Amniotic fluid samples were obtained via amniocentesis from 57 pregnancies with DS and 55 control pregnancies between 17 3/7 and 24 0/7 weeks of gestation. The targeted metabolomics focused on 34 organic acids, 17 amino acids, and 5 acylcarnitine metabolites. The untargeted metabolomics analysis concentrated on lipid profiles and included 602 metabolites that met quality control standards. Principal Component Analysis, Orthogonal Partial Least Squares Discriminant Analysis (OPLS‐DA), and false discovery rate (FDR) adjustments were applied. MetaboAnalystR 5.0 was used to perform the metabolic pathway analysis on the identified differential metabolites. Results Fifty differential metabolites, including L‐glutamine, eight organic acids, and 41 lipids, were significantly altered in DS based on three criteria: VIP > 1 in the OPLS‐DA model, FDR‐adjusted p ‐value < 0.05, and |log 2 FC| > log 2 (1.5) from a volcano plot of all detected metabolites. An analysis of 212 differential metabolites, selected from both targeted and untargeted approaches (VIP > 1 in the OPLS‐DA model and FDR‐adjusted p ‐value < 0.05), revealed significant changes in nine metabolic pathways. Fourteen key metabolites were identified to establish a screening model for DS, achieving an area under the curve of 1.00. Conclusions Our results underscore the potential of metabolomics approaches in identifying concise and reliable biomarker combinations that demonstrate promising screening performance in DS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
土豆国王发布了新的文献求助10
刚刚
ding应助wulixin采纳,获得10
1秒前
科研通AI6应助沐沐采纳,获得10
1秒前
2秒前
浮游应助幽默谷雪采纳,获得10
2秒前
crazyfish完成签到,获得积分10
3秒前
高高的从波完成签到,获得积分10
3秒前
利奈唑胺发布了新的文献求助10
3秒前
yannn完成签到,获得积分10
4秒前
可爱的函函应助婷婷采纳,获得10
4秒前
烂漫的思柔完成签到,获得积分10
4秒前
小美完成签到,获得积分10
5秒前
bkagyin应助刘禹彤采纳,获得10
5秒前
平淡一兰完成签到 ,获得积分10
5秒前
新手菜鸟发布了新的文献求助10
6秒前
7秒前
清秀青荷完成签到,获得积分10
7秒前
xf应助qq大魔王采纳,获得10
7秒前
白介发布了新的文献求助10
7秒前
陈阳完成签到,获得积分10
9秒前
9秒前
10秒前
Nolan发布了新的文献求助10
10秒前
11秒前
bobo呀完成签到,获得积分10
12秒前
12秒前
摸鱼的张发布了新的文献求助10
12秒前
13秒前
wsx4321发布了新的文献求助10
14秒前
abc完成签到 ,获得积分10
14秒前
14秒前
cai完成签到,获得积分10
14秒前
14秒前
安和2396发布了新的文献求助10
15秒前
可爱的函函应助Mrsy采纳,获得10
15秒前
16秒前
二三发布了新的文献求助10
16秒前
16秒前
852应助sonoko采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708