Screening and Predictive Biomarkers for Down Syndrome Through Amniotic Fluid Metabolomics

代谢组学 羊水 谷氨酰胺 代谢组 生物 医学 生物信息学 内科学 胎儿 生物化学 怀孕 氨基酸 遗传学
作者
Li‐Chao Zhang,Xiaofan Yang,Yeqing Jiang,Zhen Yang,Lulu Yan,Yuxin Zhang,Qiong Li,Ling Tian,Juan Cao,Ying Zhou,Shanshan Wu,Danyan Zhuang,C Chen,Haibo Li
出处
期刊:Prenatal Diagnosis [Wiley]
被引量:2
标识
DOI:10.1002/pd.6693
摘要

ABSTRACT Background Down syndrome (DS) is a congenital disorder caused by the presence of an extra copy of all or part of chromosome 21. It is characterized by significant intellectual disability, distinct facial features, and growth and developmental challenges. The utilization of metabolomics to analyze specific metabolic markers in maternal amniotic fluid may provide innovative tools and screening methods for investigating the early pathophysiology of trisomy 21 at the functional level. Methods Amniotic fluid samples were obtained via amniocentesis from 57 pregnancies with DS and 55 control pregnancies between 17 3/7 and 24 0/7 weeks of gestation. The targeted metabolomics focused on 34 organic acids, 17 amino acids, and 5 acylcarnitine metabolites. The untargeted metabolomics analysis concentrated on lipid profiles and included 602 metabolites that met quality control standards. Principal Component Analysis, Orthogonal Partial Least Squares Discriminant Analysis (OPLS‐DA), and false discovery rate (FDR) adjustments were applied. MetaboAnalystR 5.0 was used to perform the metabolic pathway analysis on the identified differential metabolites. Results Fifty differential metabolites, including L‐glutamine, eight organic acids, and 41 lipids, were significantly altered in DS based on three criteria: VIP > 1 in the OPLS‐DA model, FDR‐adjusted p ‐value < 0.05, and |log 2 FC| > log 2 (1.5) from a volcano plot of all detected metabolites. An analysis of 212 differential metabolites, selected from both targeted and untargeted approaches (VIP > 1 in the OPLS‐DA model and FDR‐adjusted p ‐value < 0.05), revealed significant changes in nine metabolic pathways. Fourteen key metabolites were identified to establish a screening model for DS, achieving an area under the curve of 1.00. Conclusions Our results underscore the potential of metabolomics approaches in identifying concise and reliable biomarker combinations that demonstrate promising screening performance in DS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
machine关注了科研通微信公众号
刚刚
小畅发布了新的文献求助10
刚刚
nana发布了新的文献求助10
1秒前
1秒前
1秒前
谦让夏云完成签到,获得积分10
1秒前
1秒前
球球完成签到,获得积分10
1秒前
1秒前
Nevermind发布了新的文献求助10
2秒前
外向梦安发布了新的文献求助10
2秒前
2秒前
左传琦完成签到 ,获得积分10
3秒前
何休槊完成签到,获得积分10
4秒前
小海完成签到,获得积分10
4秒前
tim发布了新的文献求助10
5秒前
aqiu发布了新的文献求助10
5秒前
小杜老师完成签到,获得积分10
5秒前
糕糕发布了新的文献求助200
5秒前
瘦瘦半山完成签到,获得积分10
6秒前
瑶瑶发布了新的文献求助10
6秒前
英姑应助无语的事实采纳,获得10
6秒前
炙热耳机发布了新的文献求助10
7秒前
荔枝发布了新的文献求助10
7秒前
8秒前
Akim应助洁净的元龙采纳,获得10
8秒前
8秒前
高欣芮完成签到,获得积分10
8秒前
yier发布了新的文献求助10
8秒前
重要觅风完成签到 ,获得积分20
8秒前
卡皮巴拉完成签到,获得积分10
8秒前
米玄完成签到,获得积分10
9秒前
慕青应助小章鱼采纳,获得10
10秒前
森陌夏栀完成签到,获得积分10
10秒前
树懒吃吃完成签到,获得积分10
10秒前
江南刀王发布了新的文献求助10
12秒前
JamesPei应助看不完的文献采纳,获得10
12秒前
13秒前
小二郎应助Zhang采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098708
求助须知:如何正确求助?哪些是违规求助? 4310813
关于积分的说明 13432372
捐赠科研通 4138156
什么是DOI,文献DOI怎么找? 2267123
邀请新用户注册赠送积分活动 1270164
关于科研通互助平台的介绍 1206454