Statistical mechanic and machine learning approach for competitive adsorption of CO2/CH4 on coals and shales for CO2-enhanced methane recovery

甲烷 吸附 石油工程 化学工程 环境科学 废物管理 化学 地质学 工程类 物理化学 有机化学
作者
Pil Rip Jeon,Hyeon-Hui Lee,David J. Keffer,Chang‐Ha Lee
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:495: 153200-153200
标识
DOI:10.1016/j.cej.2024.153200
摘要

Understanding the adsorption behavior of CO2, CH4, and their mixture on coal at high pressures is necessary to achieve enhanced CH4 recovery and the simultaneous sequestration of CO2. The adsorption of CO2 and CH4 on dry coal is known to exhibit complex behavior as a function of temperature, pressure, and composition. In this study, a model for CO2 adsorption under supercritical conditions was proposed based on a combination of surface adsorption and dissolution in the coal matrix. However, the corresponding CH4 adsorption can only be presented by a surface mechanism. Although the theoretical model provides an idealized description of the heterogeneous nature of coal, it retains the ability to capture the qualitative features of the experimental isotherms. The results indicate reasonable adsorption on the coal surface and dissolution into the coal matrix in the model mechanisms. The model also provides binding energies, surface areas, absolute adsorption isotherms, and isotherms in terms of the fractional occupancy. Considering the complex behavior of mixture adsorption, a machine learning (ML) approach was applied to the adsorption data of various coals. The ML model was reliable for predicting the competitive adsorption of CO2 and CH4 regardless of the coal type (R2 = 0.9950 and 0.9923 for CO2 and CH4, respectively). According to the analytical results obtained from the theoretical model and the ML approach, the volatile matter content, fixed carbon content, and vitrinite reflectance of coal were determined to be important properties for predicting the competitive adsorption of CO2 and CH4 on coal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
叮叮完成签到,获得积分10
1秒前
2秒前
张家明发布了新的文献求助10
2秒前
3秒前
4秒前
橘子发布了新的文献求助10
4秒前
4秒前
5秒前
艺响天开发布了新的文献求助10
5秒前
Lucas应助尼莫采纳,获得10
6秒前
完美世界应助问123采纳,获得10
6秒前
kangkangkyt完成签到,获得积分10
6秒前
CipherSage应助叮叮采纳,获得10
7秒前
7秒前
鳗鱼雅绿发布了新的文献求助30
7秒前
leicaixia发布了新的文献求助10
7秒前
Ava应助Grow采纳,获得50
7秒前
8秒前
8秒前
Li完成签到 ,获得积分10
9秒前
嘻嘻发布了新的文献求助10
9秒前
yygz0703发布了新的文献求助10
10秒前
梦红尘完成签到,获得积分10
10秒前
10秒前
天真笑白发布了新的文献求助10
11秒前
你好完成签到,获得积分20
12秒前
银杏发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
xinyuexinsi完成签到 ,获得积分10
14秒前
bkagyin应助Ab采纳,获得10
14秒前
14秒前
英俊的铭应助lyw采纳,获得10
14秒前
14秒前
领导范儿应助xiuxiu采纳,获得20
15秒前
yin发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113