已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Statistical mechanic and machine learning approach for competitive adsorption of CO2/CH4 on coals and shales for CO2-enhanced methane recovery

甲烷 吸附 石油工程 化学工程 环境科学 废物管理 化学 地质学 工程类 物理化学 有机化学
作者
Pil Rip Jeon,Hyeon-Hui Lee,David J. Keffer,Chang‐Ha Lee
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:495: 153200-153200
标识
DOI:10.1016/j.cej.2024.153200
摘要

Understanding the adsorption behavior of CO2, CH4, and their mixture on coal at high pressures is necessary to achieve enhanced CH4 recovery and the simultaneous sequestration of CO2. The adsorption of CO2 and CH4 on dry coal is known to exhibit complex behavior as a function of temperature, pressure, and composition. In this study, a model for CO2 adsorption under supercritical conditions was proposed based on a combination of surface adsorption and dissolution in the coal matrix. However, the corresponding CH4 adsorption can only be presented by a surface mechanism. Although the theoretical model provides an idealized description of the heterogeneous nature of coal, it retains the ability to capture the qualitative features of the experimental isotherms. The results indicate reasonable adsorption on the coal surface and dissolution into the coal matrix in the model mechanisms. The model also provides binding energies, surface areas, absolute adsorption isotherms, and isotherms in terms of the fractional occupancy. Considering the complex behavior of mixture adsorption, a machine learning (ML) approach was applied to the adsorption data of various coals. The ML model was reliable for predicting the competitive adsorption of CO2 and CH4 regardless of the coal type (R2 = 0.9950 and 0.9923 for CO2 and CH4, respectively). According to the analytical results obtained from the theoretical model and the ML approach, the volatile matter content, fixed carbon content, and vitrinite reflectance of coal were determined to be important properties for predicting the competitive adsorption of CO2 and CH4 on coal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsy发布了新的文献求助30
1秒前
1秒前
星星醒醒发布了新的文献求助10
2秒前
bkagyin应助bujiachong采纳,获得10
3秒前
3秒前
9秒前
9秒前
lsy完成签到,获得积分20
10秒前
CipherSage应助gxx采纳,获得10
10秒前
13秒前
Darrin发布了新的文献求助10
14秒前
肚皮完成签到 ,获得积分0
16秒前
16秒前
圣尊鳕幽完成签到,获得积分10
16秒前
漂亮白枫发布了新的文献求助10
19秒前
明亮的苡发布了新的文献求助10
22秒前
liu完成签到 ,获得积分10
22秒前
Jenny完成签到 ,获得积分10
22秒前
机智的念文完成签到 ,获得积分10
23秒前
lalala发布了新的文献求助10
24秒前
Owen应助漂亮白枫采纳,获得10
24秒前
26秒前
iuhgnor发布了新的文献求助10
28秒前
紧张的靖荷发布了新的文献求助200
28秒前
29秒前
30秒前
31秒前
chen发布了新的文献求助10
33秒前
火乐发布了新的文献求助200
34秒前
34秒前
姚小楠完成签到,获得积分10
34秒前
英俊的铭应助陈花蕾采纳,获得10
34秒前
bkagyin应助克里斯就是逊啦采纳,获得10
34秒前
贪玩心情完成签到,获得积分10
35秒前
大力可燕完成签到 ,获得积分10
35秒前
科研通AI5应助lalala采纳,获得10
36秒前
彭于晏应助chen采纳,获得10
37秒前
weige完成签到,获得积分10
39秒前
42秒前
粗心的chen完成签到 ,获得积分10
44秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5219571
求助须知:如何正确求助?哪些是违规求助? 4393356
关于积分的说明 13678708
捐赠科研通 4256088
什么是DOI,文献DOI怎么找? 2335389
邀请新用户注册赠送积分活动 1332927
关于科研通互助平台的介绍 1287214