Statistical mechanic and machine learning approach for competitive adsorption of CO2/CH4 on coals and shales for CO2-enhanced methane recovery

甲烷 吸附 石油工程 化学工程 环境科学 废物管理 化学 地质学 工程类 物理化学 有机化学
作者
Pil Rip Jeon,Hyeon-Hui Lee,David J. Keffer,Chang‐Ha Lee
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:495: 153200-153200
标识
DOI:10.1016/j.cej.2024.153200
摘要

Understanding the adsorption behavior of CO2, CH4, and their mixture on coal at high pressures is necessary to achieve enhanced CH4 recovery and the simultaneous sequestration of CO2. The adsorption of CO2 and CH4 on dry coal is known to exhibit complex behavior as a function of temperature, pressure, and composition. In this study, a model for CO2 adsorption under supercritical conditions was proposed based on a combination of surface adsorption and dissolution in the coal matrix. However, the corresponding CH4 adsorption can only be presented by a surface mechanism. Although the theoretical model provides an idealized description of the heterogeneous nature of coal, it retains the ability to capture the qualitative features of the experimental isotherms. The results indicate reasonable adsorption on the coal surface and dissolution into the coal matrix in the model mechanisms. The model also provides binding energies, surface areas, absolute adsorption isotherms, and isotherms in terms of the fractional occupancy. Considering the complex behavior of mixture adsorption, a machine learning (ML) approach was applied to the adsorption data of various coals. The ML model was reliable for predicting the competitive adsorption of CO2 and CH4 regardless of the coal type (R2 = 0.9950 and 0.9923 for CO2 and CH4, respectively). According to the analytical results obtained from the theoretical model and the ML approach, the volatile matter content, fixed carbon content, and vitrinite reflectance of coal were determined to be important properties for predicting the competitive adsorption of CO2 and CH4 on coal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
hmhu发布了新的文献求助30
1秒前
汉堡包应助沉默安波采纳,获得10
1秒前
一树春风发布了新的文献求助10
1秒前
1秒前
silence完成签到,获得积分10
3秒前
5秒前
迅速弘文关注了科研通微信公众号
5秒前
优质演绎了我的青春完成签到 ,获得积分10
5秒前
silence发布了新的文献求助10
5秒前
小立发布了新的文献求助10
6秒前
暗袍完成签到,获得积分10
6秒前
开心易真完成签到,获得积分20
8秒前
9秒前
9秒前
10秒前
11秒前
灵巧盼兰完成签到,获得积分20
11秒前
开心易真发布了新的文献求助10
13秒前
14秒前
青铜葵发布了新的文献求助10
14秒前
86400发布了新的文献求助10
15秒前
李博士发布了新的文献求助30
16秒前
16秒前
17秒前
nvwu发布了新的文献求助30
17秒前
Luo完成签到,获得积分10
18秒前
彤航完成签到,获得积分10
18秒前
霸气的不评完成签到,获得积分20
20秒前
xiangxinzx完成签到,获得积分10
20秒前
21秒前
22秒前
李健春发布了新的文献求助10
22秒前
24秒前
相率而为伪者完成签到,获得积分10
24秒前
24秒前
桐桐应助松山少林学武功采纳,获得10
26秒前
26秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291