地质学
地幔(地质学)
热点(地质)
大洋中脊
地球科学
地球化学
地震学
作者
Fangyi Zhang,Shaocong Lai,Vincenzo Stagno,Li‐Hui Chen,Chao Zhang,Ren‐Zhi Zhu,Yu Zhu,Xiao‐Jun Wang,Jiangfeng Qin,Jixin Wang
摘要
Abstract The redox state of the convective asthenospheric mantle governs the speciation of volatile elements such as carbon and, therefore, influences the depth at which (redox) melting can occur, with implications for seismic signals. Geophysical observations suggest the potential presence of carbonatite melts at a depth of 200–250 km. However, thermodynamic models indicate that the onset of (redox) melting would occur at 100–150 km for a mantle with 3%–4% of Fe 3+ /∑Fe. Here, we present a new oxybarometer that is based on the V/Sc exchange coefficient between olivine and the melt, which is insensitive to surficial alteration, volatile degassing, electron exchange reactions and fractional crystallization. By applying this method to primary mid‐ocean ridge basalts (MORBs) from Southwest Indian Ridge and East Pacific Rise, we demonstrate that the average oxygen fugacity ( f o 2 ) of MORBs corrected for the depth of formation is 0.78 ± 0.26 (1σ) log units above the fayalite‐magnetite‐quartz (FMQ) buffer, which is slightly more oxidized than previously estimated (near FMQ buffer). Our findings indicate that the convective asthenospheric mantle exhibits higher oxygen fugacity than the continental lithospheric mantle. Along an adiabat, carbonatitic melts can form from a CO 2 ‐bearing source at a depth of 200–250 km, explaining the asthenospheric mantle's electrical conductivity and seismic velocity anomaly.
科研通智能强力驱动
Strongly Powered by AbleSci AI