Bioinspired Superwettability Surface Strategies for Condensation Heat Transfer

材料科学 冷凝 传热 纳米技术 机械 热力学 物理
作者
Rui Wang,Yuan Tian,Botao Shen,Xuefeng Gao
出处
期刊:ACS Nano [American Chemical Society]
被引量:3
标识
DOI:10.1021/acsnano.4c17632
摘要

Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.g., 2.7 mm for water. Clearly, these millimeter-sized large drops are adverse to efficient CHT because they have not only a large thermal resistance but also a slow renewal frequency. In principle, more efficient CHT can be achieved by engineering micro/nanostructure surfaces with extreme superwettability to obtain more circularly released nucleation sites and timely removal of condensate at smaller sizes. Inspired from nature, great breakthrough has been made in high-efficiency CHT proofs of concept based on various bioinspired superwettability surfaces, including condensate microdrop-jumping superhydrophobic surfaces mimicking cicada wings, superhydrophobic hybrid surfaces mimicking desert beetles, and superhydrophilic surfaces mimicking plant leaves. In this Perspective, we briefly summarize their latest progress and respective issues. Based on this, we envision the possible challenges and development trends of superwettability micro/nanostructure surfaces in the near future, especially emphasizing their practical application in high-performance phase-change devices for chip cooling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青藤发布了新的文献求助10
刚刚
刘刘佳发布了新的文献求助10
刚刚
奋斗青年应助纯真初曼采纳,获得10
刚刚
刚刚
和谐冬卉完成签到,获得积分20
1秒前
上官以山完成签到,获得积分10
1秒前
PIKAPIKAQ发布了新的文献求助10
1秒前
在水一方应助sinian思念采纳,获得10
1秒前
BAMBOO完成签到,获得积分10
2秒前
Regulus完成签到,获得积分10
2秒前
3秒前
学术垃圾发布了新的文献求助10
3秒前
丘比特应助Lin2019采纳,获得10
3秒前
在水一方应助kenny2023采纳,获得10
3秒前
Spacewings完成签到,获得积分20
4秒前
4秒前
4秒前
杨华启发布了新的文献求助30
4秒前
皓月星辰完成签到,获得积分10
4秒前
负责御姐完成签到,获得积分10
4秒前
5秒前
LHD发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
Owen应助Jerry采纳,获得10
6秒前
跳跃毒娘发布了新的文献求助10
6秒前
丘比特应助奇异果熊猫人采纳,获得10
6秒前
浮游应助Dai JZ采纳,获得10
6秒前
8秒前
Hank完成签到,获得积分10
8秒前
Spacewings发布了新的文献求助10
8秒前
samurai完成签到,获得积分10
8秒前
8秒前
X_yyy完成签到 ,获得积分10
8秒前
烟花应助满意夏天采纳,获得10
9秒前
10秒前
qian发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352065
求助须知:如何正确求助?哪些是违规求助? 4485004
关于积分的说明 13961490
捐赠科研通 4384753
什么是DOI,文献DOI怎么找? 2409168
邀请新用户注册赠送积分活动 1401603
关于科研通互助平台的介绍 1375188