Bioinspired Superwettability Surface Strategies for Condensation Heat Transfer

材料科学 冷凝 传热 纳米技术 机械 热力学 物理
作者
Rui Wang,Yuan Tian,Botao Shen,Xuefeng Gao
出处
期刊:ACS Nano [American Chemical Society]
被引量:3
标识
DOI:10.1021/acsnano.4c17632
摘要

Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.g., 2.7 mm for water. Clearly, these millimeter-sized large drops are adverse to efficient CHT because they have not only a large thermal resistance but also a slow renewal frequency. In principle, more efficient CHT can be achieved by engineering micro/nanostructure surfaces with extreme superwettability to obtain more circularly released nucleation sites and timely removal of condensate at smaller sizes. Inspired from nature, great breakthrough has been made in high-efficiency CHT proofs of concept based on various bioinspired superwettability surfaces, including condensate microdrop-jumping superhydrophobic surfaces mimicking cicada wings, superhydrophobic hybrid surfaces mimicking desert beetles, and superhydrophilic surfaces mimicking plant leaves. In this Perspective, we briefly summarize their latest progress and respective issues. Based on this, we envision the possible challenges and development trends of superwettability micro/nanostructure surfaces in the near future, especially emphasizing their practical application in high-performance phase-change devices for chip cooling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vi完成签到 ,获得积分10
刚刚
整齐冬瓜发布了新的文献求助10
刚刚
XiaohuLee发布了新的文献求助10
刚刚
ludong_0应助油炸丸子采纳,获得10
刚刚
章鱼完成签到,获得积分10
刚刚
努力科研的博士僧完成签到,获得积分10
刚刚
刚刚
爆米花应助青青草采纳,获得10
刚刚
Ethan完成签到,获得积分10
1秒前
乐乐应助过儿采纳,获得30
1秒前
大萌完成签到,获得积分10
1秒前
1秒前
mymai11完成签到,获得积分10
3秒前
orixero应助王敬顺采纳,获得10
3秒前
AronHUANG完成签到,获得积分10
3秒前
tks完成签到,获得积分10
3秒前
眼睛大雨筠应助萧水白采纳,获得30
3秒前
时尚的冰棍儿完成签到 ,获得积分10
3秒前
whiteside完成签到,获得积分10
3秒前
Raojas完成签到,获得积分10
4秒前
赘婿应助SweetyANN采纳,获得10
4秒前
loey完成签到,获得积分10
4秒前
Riggle G完成签到,获得积分10
4秒前
5秒前
直球科研完成签到 ,获得积分10
5秒前
九月完成签到,获得积分10
6秒前
小鱼完成签到,获得积分10
6秒前
Abi完成签到,获得积分10
6秒前
白斯特完成签到,获得积分10
7秒前
121关闭了121文献求助
7秒前
天天喝咖啡完成签到,获得积分10
7秒前
7秒前
RON发布了新的文献求助10
8秒前
蜂鸟完成签到,获得积分10
8秒前
神的女人完成签到,获得积分10
9秒前
hyh发布了新的文献求助10
9秒前
9秒前
CipherSage应助naitangkeke采纳,获得10
10秒前
10秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874