已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bioinspired Superwettability Surface Strategies for Condensation Heat Transfer

材料科学 冷凝 传热 纳米技术 机械 热力学 物理
作者
Rui Wang,Yuan Tian,Botao Shen,Xuefeng Gao
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c17632
摘要

Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.g., 2.7 mm for water. Clearly, these millimeter-sized large drops are adverse to efficient CHT because they have not only a large thermal resistance but also a slow renewal frequency. In principle, more efficient CHT can be achieved by engineering micro/nanostructure surfaces with extreme superwettability to obtain more circularly released nucleation sites and timely removal of condensate at smaller sizes. Inspired from nature, great breakthrough has been made in high-efficiency CHT proofs of concept based on various bioinspired superwettability surfaces, including condensate microdrop-jumping superhydrophobic surfaces mimicking cicada wings, superhydrophobic hybrid surfaces mimicking desert beetles, and superhydrophilic surfaces mimicking plant leaves. In this Perspective, we briefly summarize their latest progress and respective issues. Based on this, we envision the possible challenges and development trends of superwettability micro/nanostructure surfaces in the near future, especially emphasizing their practical application in high-performance phase-change devices for chip cooling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助meng采纳,获得10
1秒前
1秒前
hihj完成签到,获得积分10
2秒前
魏成天完成签到 ,获得积分10
3秒前
我爱学习完成签到 ,获得积分10
4秒前
4秒前
水灯霖发布了新的文献求助10
6秒前
6秒前
酷炫的若剑完成签到,获得积分10
8秒前
8秒前
柇素完成签到,获得积分10
8秒前
10秒前
tommyliu完成签到,获得积分10
10秒前
今天是颗大白菜完成签到 ,获得积分10
10秒前
芙芙发布了新的文献求助30
10秒前
11秒前
陈小瑜完成签到,获得积分10
12秒前
勤劳荧荧发布了新的文献求助10
12秒前
柇素发布了新的文献求助30
13秒前
6188完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
ktw完成签到,获得积分10
16秒前
不能随便完成签到,获得积分10
17秒前
幽默微笑完成签到,获得积分10
17秒前
18秒前
动听凡霜完成签到,获得积分10
18秒前
资格丘二完成签到 ,获得积分10
21秒前
归尘完成签到,获得积分10
22秒前
以水为师完成签到 ,获得积分10
23秒前
kytm完成签到,获得积分10
23秒前
26秒前
27秒前
负责灵萱完成签到 ,获得积分10
27秒前
zzz完成签到 ,获得积分10
28秒前
Rebeccaiscute完成签到 ,获得积分10
29秒前
脑壳疼完成签到,获得积分10
31秒前
32秒前
葱饼完成签到 ,获得积分10
33秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471318
求助须知:如何正确求助?哪些是违规求助? 3064297
关于积分的说明 9087965
捐赠科研通 2755001
什么是DOI,文献DOI怎么找? 1511724
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698423