Mitochondria-associated programmed cell death: elucidating prognostic biomarkers, immune checkpoints, and therapeutic avenues in multiple myeloma

列线图 比例危险模型 肿瘤科 接收机工作特性 多发性骨髓瘤 生存分析 医学 免疫系统 内科学 生物信息学 生物 免疫学
作者
Gongzhizi Gao,Jiyu Miao,Yachun Jia,Aili He
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1448764
摘要

Background Multiple myeloma (MM) is a hematological malignancy characterized by the abnormal proliferation of plasma cells. Mitochondrial dysfunction and dysregulated programmed cell death (PCD) pathways have been implicated in MM pathogenesis. However, the precise roles of mitochondria-related genes (MRGs) and PCD-related genes (PCDRGs) in MM prognosis remain unclear. Methods Transcriptomic data from MM patients and healthy controls were analyzed to identify differentially expressed genes (DEGs). Candidate genes were selected by intersecting DEGs with curated lists of MRGs and PCDRGs. Univariate Cox, least absolute shrinkage and selection operator (LASSO), multivariate Cox, and stepwise regression analyses identified prognostic genes among the candidates. A risk model was constructed from these genes, and patients were stratified into high- and low-risk groups for survival analysis. Independent prognostic factors were incorporated into a nomogram to predict MM patient outcomes. Model performance was evaluated using calibration curves, receiver operating characteristic (ROC) analysis, and decision curve analysis (DCA). Finally, associations between prognostic genes and immune cell infiltration/drug responses were explored. Results 2,192 DEGs were detected between MM and control samples. 30 candidate genes were identified at the intersection of DEGs, 1,136 MRGs, and 1,548 PCDRGs. TRIAP1, TOMM7, PINK1, CHCHD10, PPIF, BCL2L1 , and NDUFA13 were selected as prognostic genes. The risk model stratified patients into high- and low-risk groups with significantly different survival probabilities. Age, gender, ISS stage, and risk score were independent prognostic factors. The nomogram displayed good calibration and discriminative ability (AUC) in predicting survival, with clinical utility demonstrated by DCA. 9 immune cell types showed differential infiltration between MM and controls, with significant associations to risk scores and specific prognostic genes. 57 drugs, including nelarabine and vorinostat, were predicted to interact with the prognostic genes. Ultimately, qPCR in clinical samples from MM patients and healthy donors validated the expression levels of the seven key prognostic genes, corroborating the bioinformatic findings. Conclusion Seven genes ( TRIAP1, TOMM7, PINK1, CHCHD10, PPIF, BCL2L1, NDUFA13 ) involved in mitochondrial function and PCD pathways were identified as prognostic markers in MM. These findings provide insights into MM biology and prognosis, highlighting potential therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献完成签到,获得积分20
刚刚
orixero应助务实青亦采纳,获得10
刚刚
h4ra1n完成签到,获得积分10
刚刚
大模型应助彩色的沛白采纳,获得30
刚刚
刚刚
梓歆发布了新的文献求助10
1秒前
wxy完成签到,获得积分10
1秒前
wanci应助哈哈哈采纳,获得10
2秒前
不吃辣活不了完成签到,获得积分10
2秒前
JMao完成签到,获得积分10
2秒前
2秒前
曾经的苑博完成签到,获得积分10
2秒前
佰斯特威应助sherry221采纳,获得10
2秒前
3秒前
Alisa发布了新的文献求助10
3秒前
Owen应助宇与鱼采纳,获得10
3秒前
独特斩完成签到,获得积分10
3秒前
4秒前
4秒前
yulongmin发布了新的文献求助10
4秒前
畅快蓝血完成签到,获得积分10
5秒前
5秒前
赵赵赵发布了新的文献求助10
5秒前
5秒前
小白应助qiqishao采纳,获得10
5秒前
金容完成签到,获得积分10
6秒前
逃跑的炸鸡完成签到 ,获得积分10
6秒前
7秒前
Zll完成签到,获得积分10
7秒前
A爷有特点完成签到 ,获得积分10
8秒前
8秒前
林林发布了新的文献求助10
9秒前
深情安青应助meimei采纳,获得30
9秒前
angelinazh发布了新的文献求助30
9秒前
甜美三娘发布了新的文献求助10
9秒前
独特的莫言完成签到,获得积分10
9秒前
10秒前
小叮当发布了新的文献求助30
11秒前
科研通AI5应助反差小猴采纳,获得10
11秒前
JohanXu完成签到,获得积分10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755562
求助须知:如何正确求助?哪些是违规求助? 3298696
关于积分的说明 10106720
捐赠科研通 3013351
什么是DOI,文献DOI怎么找? 1655100
邀请新用户注册赠送积分活动 789453
科研通“疑难数据库(出版商)”最低求助积分说明 753286