肠衣
药理学
药物输送
控制释放
生物医学工程
小肠
肠衣
药品
医学
作者
Josefa Alvarez-Fuentes,Mercedes Fernández-Arévalo,M.L. González-Rodríguez,Marzia Cirri,Paola Mura
标识
DOI:10.1080/10611860400013501
摘要
A new oral drug delivery system for colon targeting has been developed based on enteric-coated matrix tablets which suitably exploits both pH-sensitive and time-dependent functions. Matrix-tablets were prepared by direct compression of mixtures of hydroxyethylcellulose (HEC), a hydrophilic swellable polymer, with the inert insoluble ethylcellulose (EC) or micro-crystalline cellulose (MCC) polymers, in which theophylline, selected as model drug, was dispersed. Eudragit S100, a methacrylic acid copolymer soluble at pH 7, was used as pH-sensitive coating polymer. The influence of varying the cellulose-derivative combinations and their relative ratios as well as the level of the coating polymer was investigated. Surface morphology of the tablets was monitored by SEM analysis before and after the release test. The results of release studies, performed according to the USP basket method using a sequence of dissolution media simulating the gastrointestinal physiological pH variation, indicated that the Eudragit S100 enteric-coated matrix tablets were successful in achieving gastric resistance and timed-release of the drug, assuring an adequate lag time for the intended colonic targeting, followed by a controlled-release phase. The enteric-coating level emerged as the critical factor in determining the duration of the lag-phase, whereas the release rate mainly depended on the matrix composition. Formulations with higher HEC content showed a faster drug release rate than those with greater content in inert polymer and the MCC-HEC combinations were more effective than the corresponding EC-HEC ones. The best results were given by the 27% coated 1:0.3:0.7 (w/w) drug/MCC/HEC tablets, which, after a 260 min lag time, regularly released the drug, achieving about 90% of release after 10 h.
科研通智能强力驱动
Strongly Powered by AbleSci AI