Development of an in vivo glucosylation platform by coupling production to growth: Production of phenolic glucosides by a glycosyltransferase of Vitis vinifera

糖基转移酶 生物化学 代谢工程 糖基化 化学 果糖 葡萄糖基转移酶 核苷酸糖 尿苷二磷酸葡萄糖 大肠杆菌 蔗糖 商品化学品 催化作用 基因
作者
Frederik De Bruyn,Brecht De Paepe,Jo Maertens,Joeri Beauprez,Pieter De Cocker,Stein Mincke,Christian V. Stevens,Marjan De Mey
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:112 (8): 1594-1603 被引量:44
标识
DOI:10.1002/bit.25570
摘要

ABSTRACT Glycosylation of small molecules can significantly alter their properties such as solubility, stability, and/or bioactivity, making glycosides attractive and highly demanded compounds. Consequently, many biotechnological glycosylation approaches have been developed, with enzymatic synthesis and whole‐cell biocatalysis as the most prominent techniques. However, most processes still suffer from low yields, production rates and inefficient UDP‐sugar formation. To this end, a novel metabolic engineering strategy is presented for the in vivo glucosylation of small molecules in Escherichia coli W. This strategy focuses on the introduction of an alternative sucrose metabolism using sucrose phosphorylase for the direct and efficient generation of glucose 1‐phosphate as precursor for UDP‐glucose formation and fructose, which serves as a carbon source for growth. By targeted gene deletions, a split metabolism is created whereby glucose 1‐phosphate is rerouted from the glycolysis to product formation (i.e., glucosylation). Further, the production pathway was enhanced by increasing and preserving the intracellular UDP‐glucose pool. Expression of a versatile glucosyltransferase from Vitis vinifera (VvGT2) enabled the strain to efficiently produce 14 glucose esters of various hydroxycinnamates and hydroxybenzoates with conversion yields up to 100%. To our knowledge, this fast growing (and simultaneously producing) E. coli mutant is the first versatile host described for the glucosylation of phenolic acids in a fermentative way using only sucrose as a cheap and sustainable carbon source. Biotechnol. Bioeng. 2015;112: 1594–1603. © 2015 Wiley Periodicals, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎幻丝应助tp040900采纳,获得20
刚刚
zzz完成签到,获得积分10
刚刚
忆韵发布了新的文献求助10
1秒前
fan发布了新的文献求助10
1秒前
我是老大应助zzzxh采纳,获得10
2秒前
ZZZ完成签到 ,获得积分10
2秒前
2秒前
2秒前
CipherSage应助SKZ采纳,获得10
2秒前
3秒前
ffff发布了新的文献求助10
3秒前
英俊的铭应助辛勤的志泽采纳,获得30
4秒前
4秒前
Sekiro完成签到,获得积分10
4秒前
李何冯完成签到,获得积分20
5秒前
shibomeng完成签到,获得积分10
5秒前
xicifish完成签到,获得积分10
6秒前
370完成签到,获得积分10
6秒前
ZZW完成签到,获得积分10
7秒前
fan完成签到,获得积分20
7秒前
勤恳安南完成签到,获得积分10
8秒前
zcc456完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
K1481691发布了新的文献求助10
10秒前
10秒前
Akim应助stargazer采纳,获得10
11秒前
完美世界应助斯文可仁采纳,获得10
11秒前
11秒前
明亮夕阳发布了新的文献求助10
11秒前
HHTTY发布了新的文献求助10
11秒前
三只蚊子发布了新的文献求助10
13秒前
13秒前
矮小的小珍发布了新的文献求助150
13秒前
13秒前
汉堡包应助狡猾的家伙采纳,获得10
14秒前
斯文的葶完成签到,获得积分20
14秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123270
求助须知:如何正确求助?哪些是违规求助? 2773756
关于积分的说明 7719288
捐赠科研通 2429428
什么是DOI,文献DOI怎么找? 1290306
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251