Uncertainty and stress: Why it causes diseases and how it is mastered by the brain

惊喜 心理学 认知心理学 能量(信号处理) 静载荷 认知科学 认知 脑老化 自由能原理 约束(计算机辅助设计) 计算机科学 风险分析(工程) 神经科学 社会心理学 医学 机器学习 统计 数学 机械工程 工程类
作者
Achim Peters,Bruce S. McEwen,Karl J. Friston
出处
期刊:Progress in Neurobiology [Elsevier]
卷期号:156: 164-188 被引量:542
标识
DOI:10.1016/j.pneurobio.2017.05.004
摘要

The term ‘stress’ – coined in 1936 – has many definitions, but until now has lacked a theoretical foundation. Here we present an information-theoretic approach – based on the ‘free energy principle’ – defining the essence of stress; namely, uncertainty. We address three questions: What is uncertainty? What does it do to us? What are our resources to master it? Mathematically speaking, uncertainty is entropy or ‘expected surprise’. The ‘free energy principle’ rests upon the fact that self-organizing biological agents resist a tendency to disorder and must therefore minimize the entropy of their sensory states. Applied to our everyday life, this means that we feel uncertain, when we anticipate that outcomes will turn out to be something other than expected – and that we are unable to avoid surprise. As all cognitive systems strive to reduce their uncertainty about future outcomes, they face a critical constraint: Reducing uncertainty requires cerebral energy. The characteristic of the vertebrate brain to prioritize its own high energy is captured by the notion of the ‘selfish brain’. Accordingly, in times of uncertainty, the selfish brain demands extra energy from the body. If, despite all this, the brain cannot reduce uncertainty, a persistent cerebral energy crisis may develop, burdening the individual by ‘allostatic load’ that contributes to systemic and brain malfunction (impaired memory, atherogenesis, diabetes and subsequent cardio- and cerebrovascular events). Based on the basic tenet that stress originates from uncertainty, we discuss the strategies our brain uses to avoid surprise and thereby resolve uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
建丰完成签到,获得积分10
刚刚
刚刚
乐乐应助宗笑晴采纳,获得10
刚刚
拼搏太英完成签到,获得积分10
刚刚
1秒前
susu发布了新的文献求助200
1秒前
3秒前
loveyouxkkt应助韦老虎采纳,获得30
3秒前
小蘑菇应助含糊采纳,获得10
4秒前
深情安青应助狂野觅云采纳,获得10
4秒前
鉴定为寄发布了新的文献求助30
5秒前
夜白举报无奈的浩宇求助涉嫌违规
5秒前
5秒前
6秒前
跳跃尔容发布了新的文献求助10
6秒前
青山发布了新的文献求助26
6秒前
6秒前
Agernon应助韦老虎采纳,获得10
7秒前
沉默沛岚发布了新的文献求助30
7秒前
7秒前
程程发布了新的文献求助10
7秒前
晨安发布了新的文献求助10
8秒前
8秒前
橙子完成签到,获得积分10
8秒前
8秒前
DrYang发布了新的文献求助10
8秒前
9秒前
哈哈大笑完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
特兰克斯发布了新的文献求助10
11秒前
危机的尔蝶完成签到,获得积分10
11秒前
mcsmdxs发布了新的文献求助10
12秒前
ccalvintan发布了新的文献求助10
12秒前
13秒前
13秒前
头发乱了发布了新的文献求助10
14秒前
天天快乐应助DrYang采纳,获得10
14秒前
含糊发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762