Machine learning algorithm analysis using a commercial 592-gene NGS panel to accurately predict tumor lineage for carcinoma of unknown primary (CUP).

医学 恶性肿瘤 分类器(UML) 肿瘤科 病理 内科学 人工智能 计算机科学
作者
Jim Abraham,Amy B. Heimberger,Zoran Gatalica,W. Michael Korn,David Spetzler
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:37 (15_suppl): 3083-3083 被引量:1
标识
DOI:10.1200/jco.2019.37.15_suppl.3083
摘要

3083 Background: The diagnosis of a malignancy is typically informed by clinical presentation and tumor tissue features including cell morphology, immunohistochemistry, cytogenetics, and molecular markers. However, in approximately 5-10% of cancers, ambiguity is high enough that no tissue of origin can be determined and the specimen is labeled as a Cancer of Occult\Unknown Primary (CUP). Lack of reliable classification of a tumor poses a significant treatment dilemma for the oncologist leading to inappropriate and/or delayed treatment. Methods: 40,000 tumor patients with NGS data were used to construct a multiple parameter lineage-specific classification system using an advanced machine learning approach. The dataset for each classifier was split 50% for training and the other 50% for testing. The training task for each classifier was to identify the cases that were similar to the cases it was trained on against a backdrop of randomly selected cases of other histological origins. Results: Tumor lineage classifiers predicted the correct classifications where the primary site was known with accuracies ranging between 85% and 95%. When applied to CUP cases (n = 500), an unequivocal result could be obtained 100% of the time. Conclusions: Lineage predictors can render a histologic diagnosis to CUP cases that can inform treatment and potentially improve outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小文发布了新的文献求助10
1秒前
qqqq082完成签到 ,获得积分10
1秒前
2秒前
思源应助garlic采纳,获得10
2秒前
GCB完成签到,获得积分10
2秒前
倪好完成签到,获得积分10
3秒前
科研通AI5应助linya采纳,获得10
3秒前
3秒前
务实天思关注了科研通微信公众号
3秒前
小W爱吃梨完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
研友_V8Qmr8发布了新的文献求助10
4秒前
dnbe发布了新的文献求助10
4秒前
Leon应助浅攻扰耕章楶采纳,获得10
5秒前
root@huhaijun:/完成签到,获得积分10
5秒前
搬砖小丁完成签到,获得积分10
5秒前
华仔应助小甜甜采纳,获得10
6秒前
莫氓完成签到,获得积分10
6秒前
guanruo发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
111111完成签到,获得积分10
7秒前
稳重笑南完成签到,获得积分10
8秒前
实验好难应助WW采纳,获得10
8秒前
zrq2511发布了新的文献求助10
8秒前
8秒前
9秒前
潞垚发布了新的文献求助10
10秒前
10秒前
昏睡的蟠桃应助YEE采纳,获得200
10秒前
acdc发布了新的文献求助10
10秒前
xsf发布了新的文献求助10
10秒前
胖胖发布了新的文献求助10
11秒前
科研通AI5应助_蝴蝶小姐采纳,获得10
11秒前
12秒前
chl发布了新的文献求助10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3658616
求助须知:如何正确求助?哪些是违规求助? 3220669
关于积分的说明 9736872
捐赠科研通 2929813
什么是DOI,文献DOI怎么找? 1604106
邀请新用户注册赠送积分活动 756967
科研通“疑难数据库(出版商)”最低求助积分说明 734269