Role of Topological, Electronic, Geometrical, Constitutional and Quantum Chemical Based Descriptors in QSAR: mPGES-1 as a Case Study

数量结构-活动关系 试验装置 量子化学 分子描述符 适用范围 化学 人工智能 计算化学 计算机科学 分子 立体化学 有机化学
作者
Ashish Gupta,Virender Kumar,Polamarasetty Aparoy
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:18 (13): 1075-1090 被引量:12
标识
DOI:10.2174/1568026618666180719164149
摘要

Quantitative Structure Activity Relationship (QSAR) is one of the widely used ligand based drug design strategies. Although a number of QSAR studies have been reported, debates over the limitations and accuracy of QSAR models are at large. In this review the applicability of various classes of molecular descriptors in QSAR has been explained. Protocol for QSAR model development and validation is presented. Here we discuss a case study on 7-Phenyl-imidazoquinolin-4(5H)-one derivatives as potent mPGES-1 inhibitors to identify crucial physicochemical properties responsible for mPGES-1 inhibition. The case study explains the methodology for QSAR analysis, validation of the developed models and role of diverse classes of molecular descriptors in defining the inhibitory activity of considered inhibitors. Various molecular descriptors derived from 2D/3D structure and quantum mechanics were considered in the study. Initially, QSAR models for the training set compounds were developed individually for each class of molecular descriptors. Further, a combined QSAR model was developed using the best descriptor from all the classes. The models obtained were further validated using an external test set. Combined QSAR model exhibited the best correlation (r = 0.80) between the predicted and experimental biological activities of test set compounds. The results of the QSAR analysis were further backed by docking studies. From the results of the case study it is evident that rather than a single class of molecular descriptors, a combination of molecular descriptors belonging to different classes significantly improves the QSAR predictions. The techniques and protocol discussed in the present work might be of significant importance while developing QSAR models of various drug targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
paleo-地质发布了新的文献求助20
1秒前
科研通AI2S应助张秋雨采纳,获得10
1秒前
hui完成签到,获得积分20
1秒前
乐乐发布了新的文献求助10
2秒前
3秒前
3秒前
躺平研究生完成签到,获得积分10
3秒前
4秒前
5秒前
zy发布了新的文献求助10
5秒前
6秒前
Allenlee发布了新的文献求助10
7秒前
小半发布了新的文献求助10
7秒前
8秒前
顺心代云完成签到,获得积分20
8秒前
xxbear77完成签到,获得积分10
8秒前
健那绿完成签到,获得积分10
8秒前
AC赵先生发布了新的文献求助10
8秒前
搞怪的明辉完成签到,获得积分10
10秒前
伈X发布了新的文献求助10
11秒前
11秒前
yth发布了新的文献求助10
13秒前
谨慎的雨琴完成签到,获得积分10
13秒前
13秒前
13秒前
Jasper应助俺爱SCI采纳,获得10
13秒前
务实的数据线完成签到,获得积分10
13秒前
14秒前
bkagyin应助天意不可违采纳,获得10
15秒前
打打应助Elian采纳,获得10
15秒前
15秒前
黄垚发布了新的文献求助10
15秒前
李爱国应助zxy采纳,获得20
15秒前
17秒前
yu完成签到,获得积分10
17秒前
呆萌问丝完成签到,获得积分10
17秒前
翁怜晴完成签到,获得积分10
18秒前
啦啦啦发布了新的文献求助10
18秒前
于帆发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919