数量结构-活动关系
试验装置
量子化学
分子描述符
适用范围
化学
人工智能
计算化学
计算机科学
分子
立体化学
有机化学
作者
Ashish Gupta,Virender Kumar,Polamarasetty Aparoy
标识
DOI:10.2174/1568026618666180719164149
摘要
Quantitative Structure Activity Relationship (QSAR) is one of the widely used ligand based drug design strategies. Although a number of QSAR studies have been reported, debates over the limitations and accuracy of QSAR models are at large. In this review the applicability of various classes of molecular descriptors in QSAR has been explained. Protocol for QSAR model development and validation is presented. Here we discuss a case study on 7-Phenyl-imidazoquinolin-4(5H)-one derivatives as potent mPGES-1 inhibitors to identify crucial physicochemical properties responsible for mPGES-1 inhibition. The case study explains the methodology for QSAR analysis, validation of the developed models and role of diverse classes of molecular descriptors in defining the inhibitory activity of considered inhibitors. Various molecular descriptors derived from 2D/3D structure and quantum mechanics were considered in the study. Initially, QSAR models for the training set compounds were developed individually for each class of molecular descriptors. Further, a combined QSAR model was developed using the best descriptor from all the classes. The models obtained were further validated using an external test set. Combined QSAR model exhibited the best correlation (r = 0.80) between the predicted and experimental biological activities of test set compounds. The results of the QSAR analysis were further backed by docking studies. From the results of the case study it is evident that rather than a single class of molecular descriptors, a combination of molecular descriptors belonging to different classes significantly improves the QSAR predictions. The techniques and protocol discussed in the present work might be of significant importance while developing QSAR models of various drug targets.
科研通智能强力驱动
Strongly Powered by AbleSci AI