亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Role of Topological, Electronic, Geometrical, Constitutional and Quantum Chemical Based Descriptors in QSAR: mPGES-1 as a Case Study

数量结构-活动关系 试验装置 量子化学 分子描述符 适用范围 化学 人工智能 计算化学 计算机科学 分子 立体化学 有机化学
作者
Ashish Gupta,Virender Kumar,Polamarasetty Aparoy
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:18 (13): 1075-1090 被引量:12
标识
DOI:10.2174/1568026618666180719164149
摘要

Quantitative Structure Activity Relationship (QSAR) is one of the widely used ligand based drug design strategies. Although a number of QSAR studies have been reported, debates over the limitations and accuracy of QSAR models are at large. In this review the applicability of various classes of molecular descriptors in QSAR has been explained. Protocol for QSAR model development and validation is presented. Here we discuss a case study on 7-Phenyl-imidazoquinolin-4(5H)-one derivatives as potent mPGES-1 inhibitors to identify crucial physicochemical properties responsible for mPGES-1 inhibition. The case study explains the methodology for QSAR analysis, validation of the developed models and role of diverse classes of molecular descriptors in defining the inhibitory activity of considered inhibitors. Various molecular descriptors derived from 2D/3D structure and quantum mechanics were considered in the study. Initially, QSAR models for the training set compounds were developed individually for each class of molecular descriptors. Further, a combined QSAR model was developed using the best descriptor from all the classes. The models obtained were further validated using an external test set. Combined QSAR model exhibited the best correlation (r = 0.80) between the predicted and experimental biological activities of test set compounds. The results of the QSAR analysis were further backed by docking studies. From the results of the case study it is evident that rather than a single class of molecular descriptors, a combination of molecular descriptors belonging to different classes significantly improves the QSAR predictions. The techniques and protocol discussed in the present work might be of significant importance while developing QSAR models of various drug targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
webmaster完成签到,获得积分10
5秒前
向东是大海完成签到,获得积分10
9秒前
30秒前
CC发布了新的文献求助10
1分钟前
万能图书馆应助清晨仪仪采纳,获得30
1分钟前
Yihan完成签到,获得积分10
1分钟前
科研王者发布了新的文献求助10
1分钟前
老万的小迷弟完成签到,获得积分10
1分钟前
JoeyJin完成签到,获得积分10
1分钟前
我是老大应助科研王者采纳,获得10
1分钟前
2分钟前
yeeeee发布了新的文献求助10
2分钟前
ttkx发布了新的文献求助10
2分钟前
CipherSage应助yeeeee采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
artos发布了新的文献求助30
3分钟前
Lucas应助科研通管家采纳,获得10
3分钟前
科研通AI6应助artos采纳,获得10
4分钟前
华仔应助CC采纳,获得30
4分钟前
4分钟前
CC发布了新的文献求助30
4分钟前
执着梦柏完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
SciGPT应助科研通管家采纳,获得10
5分钟前
6分钟前
清晨仪仪发布了新的文献求助30
6分钟前
6分钟前
步念发布了新的文献求助30
6分钟前
科研通AI6应助步念采纳,获得30
6分钟前
Ava应助查莉采纳,获得10
6分钟前
清晨仪仪发布了新的文献求助10
7分钟前
麻辣香锅发布了新的文献求助10
7分钟前
科研通AI6应助CC采纳,获得10
7分钟前
李李爱种花完成签到 ,获得积分10
7分钟前
8分钟前
查莉发布了新的文献求助10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622241
求助须知:如何正确求助?哪些是违规求助? 4707275
关于积分的说明 14938986
捐赠科研通 4769648
什么是DOI,文献DOI怎么找? 2552255
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475053