光降解
生物降解
化学
环境化学
降级(电信)
土壤水分
环境科学
土壤科学
有机化学
光催化
计算机科学
电信
催化作用
作者
Ignaz J. Buerge,R. Kasteel,Astrid Bächli,Thomas Poiger
标识
DOI:10.1021/acs.est.8b07210
摘要
Imazamox is a chiral herbicide that, in laboratory experiments in the dark, exhibits pronounced enantioselective biodegradation in certain soils. Imazamox also shows rapid photodegradation. However, which processes are predominant in the field is not clear. We conducted a set of soil incubation experiments under natural sunlight (and corresponding dark controls), using enantioselective LC–MS/MS analysis as a probe to distinguish biodegradation and photodegradation. Under dark conditions, imazamox was degraded enantioselectively. In contrast, degradation was nonenantioselective and 2× faster when the soil was exposed to sunlight, suggesting that biodegradation (in the dark) and photodegradation (under sunlight) were the predominant degradation processes. We also investigated the effectiveness of strategies that were proposed to exclude photodegradation in field studies, covering of soil with sand or irrigation after herbicide application. The sand cover did not prevent photodegradation. On the contrary, degradation was 10× faster than in the dark and nonenantioselective. Computer simulations supported the explanation that imazamox was transported upward by capillary flow due to evaporation onto the sand surface, where it was rapidly photodegraded. Irrigation postponed but not completely prevented photodegradation. For mobile substances susceptible to photodegradation, upward transport to the soil surface thus needs to be considered when deriving rates for biodegradation from field studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI