间充质干细胞
细胞生物学
再生(生物学)
组织工程
化学
血管生成
脚手架
伤口愈合
体外
再生医学
细胞
间质细胞
生物医学工程
细胞生长
生物
癌症研究
医学
作者
Limei Li,Jidong Li,Qin Zou,Yi Zuo,Bin Cai,Yubao Li
摘要
OBJECTIVES The bone tissue engineering primarily focuses on three-dimensional co-culture systems, which physical and biological properties resemble the cell matrix of actual tissues. The complex dialogue between bone-forming and endothelial cells (ECs) in a tissue-engineered construct will directly regulate angiogenesis and bone regeneration. The purpose of this study was to investigate whether co-culture between osteogenic and angiogenic cells derived by bone mesenchymal stem cells (MSCs) could affect cell activities and new bone formation. MATERIALS AND METHODS Mesenchymal stem cells were dually induced to differentiate into osteogenic cells (OMSCs) and ECs; both cell types were co-cultured at different ratios to investigate their effects and underlying mechanisms through ELISA, RT-qPCR and MTT assays. The selected cell mixture was transplanted onto a nano-hydroxyapatite/polyurethane (n-HA/PU) scaffold to form a cell-scaffold construct that was implanted in the rat femoral condyles. Histology and micro-CT were examined for further verification. RESULTS ELISA and gene expression studies revealed that co-cultured OMSCs/ECs (0.5/1.5) significantly elevated the transcription levels of osteogenic genes such as ALP, Col-I and OCN, as well as transcription factors Msx2, Runx2 and Osterix; it also upregulated angiogenic factors of vascular endothelial growth factor (VEGF) and CD31 when compared with cells cultured alone or in other ratios. The optimized OMSCs/ECs group had more abundant calcium phosphate crystal deposition, further facilitated their bone formation in vivo. CONCLUSIONS The OMSCs/ECs-scaffold constructs at an optimal cell ratio (0.5/1.5) achieved enhanced osteogenic and angiogenic factor expression and biomineralization, which resulted in more effective bone formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI