Customer models for artificial intelligence-based decision support in fashion online retail supply chains

快时尚 供应链 产品(数学) 决策支持系统 业务 商业决策图 服装 计算机科学 营销 人工智能 几何学 数学 考古 历史
作者
ArturM. Pereira,José Fábio Paulino de Moura,Evandro de Barros Costa,Thales Vieira,André R.D.B. Landim,Eirini Bazaki,Vanissa Wanick
出处
期刊:Decision Support Systems [Elsevier]
卷期号:158: 113795-113795 被引量:22
标识
DOI:10.1016/j.dss.2022.113795
摘要

Fashion is a global, multi-trillion dollar industry devoted to producing and selling clothing, footwear, and accessories to individuals or groups of people. Its sheer numbers, together with social and environmental sustainability concerns, and the move towards digitalization of customer-centric operations, make the fashion business a prime target for Decision Support Systems (DSSs). On the other hand, decision support in fashion retail is particularly problematic and embraces all major supply chain domains. Decisions in an online fashion retail supply chain (FRSC) are highly dependent on time-varying customers' preferences and product availability, often leading to a combinatorial explosion. To address such a problem, DSSs could greatly benefit from high-quality information stored in customer models (CMs), constructed by using Artificial Intelligence techniques, allowing informed decisions on how to personalize (adapt) to match the customer's needs and preferences. Combinations of CMs with recommender systems (RSs) have been increasingly utilized in fashion e-commerce to provide personalized product recommendations. Nevertheless, works on enhancing CMs for e-commerce or other decision-making chain domains are scanty. This paper offers a systematic review of the literature on fashion CMs with applications to decision-making in FRSCs, mining topics for a research agenda. Research on the theme is relevant and urgent for the fashion business, which is still in its infancy. Work on the agenda topics could benefit distinct fashion stakeholders, not just customers, and produce well-grounded decision-making in varied FRSC contexts and dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
啦啦啦完成签到,获得积分10
1秒前
果果超幼完成签到,获得积分10
2秒前
5秒前
yamo完成签到,获得积分10
6秒前
6秒前
zhangxiao123发布了新的文献求助10
7秒前
憨憨完成签到,获得积分10
8秒前
11秒前
12秒前
Lucas应助RN采纳,获得10
12秒前
太空人完成签到,获得积分10
13秒前
嘎嘎完成签到,获得积分10
14秒前
Czerkingsky完成签到,获得积分10
15秒前
想学习想得不行完成签到 ,获得积分10
16秒前
Pika发布了新的文献求助50
16秒前
16秒前
night完成签到 ,获得积分10
16秒前
chx2256120完成签到,获得积分10
17秒前
18秒前
20秒前
迷路的台灯完成签到 ,获得积分10
20秒前
caihong完成签到 ,获得积分10
21秒前
小蘑菇应助雯雯子采纳,获得30
22秒前
breath完成签到,获得积分10
24秒前
27秒前
852应助gxqqqqqqq采纳,获得10
27秒前
糊糊完成签到 ,获得积分10
27秒前
30秒前
阿北应助科研通管家采纳,获得10
30秒前
深情安青应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得30
30秒前
李健应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得30
30秒前
无花果应助科研通管家采纳,获得10
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
30秒前
Hello应助科研通管家采纳,获得20
30秒前
豆豆发布了新的文献求助10
31秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112109
求助须知:如何正确求助?哪些是违规求助? 2762259
关于积分的说明 7669812
捐赠科研通 2417362
什么是DOI,文献DOI怎么找? 1283102
科研通“疑难数据库(出版商)”最低求助积分说明 619297
版权声明 599583