Gas turbine availability improvement based on long short-term memory networks using deep learning of their failures data analysis

可靠性(半导体) 可靠性工程 生产力 平均故障间隔时间 工程类 期限(时间) 故障率 涡轮机 计算机科学 机械工程 量子力学 物理 宏观经济学 经济 功率(物理)
作者
Ahmed Zohair Djeddi,Ahmed Hafaifa,Nadji Hadroug,Abdelhamid Iratni
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:159: 1-25 被引量:13
标识
DOI:10.1016/j.psep.2021.12.050
摘要

Practically, a maintenance operation is performed on industrial equipment after scheduled planning that depends on the average useful life of this equipment (Mean Time Between Failures or Mean Time to Failure). Hence, in the industry, the use and the processing of data certainly improve productivity. But they induce a complexity of the industrial system caused by the different misconduct and measurements. This requires significant expenses on the safety, reliability, and availability of this type of machine. In this work, a new approach is proposed to determine the degradation indicators of a GE MS 5002B gas turbine installed on the Hassi R'Mel gas field in southern Algeria. The proposed approach is based primarily on Long Short-Term Memory LSTM networks, using in-depth learning of operating data. We are starting with the study of their reliability and their prognosis to validate and improve their performance, by optimizing their life cycle costs through good operating, repair, and maintenance planning. The objective is to remedy the problems mentioned by the processing of conventional data and predict their evolution and progression during the lifetime of the examined turbine. By combining actual reliability tests with predictions based on their failure rates to ensure good operating safety, and availability of the turbine system by controlling aging and degradation indices with satisfaction in environment and yield of this rotating machine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小虎发布了新的文献求助30
刚刚
1秒前
superworm1完成签到,获得积分10
1秒前
不懂事的小孩完成签到,获得积分10
1秒前
张瑶完成签到,获得积分10
1秒前
chloe完成签到 ,获得积分10
1秒前
桐桐应助申小萌采纳,获得10
2秒前
星星泡饭完成签到,获得积分10
2秒前
健忘曼云完成签到,获得积分10
2秒前
晶晶妹妹发布了新的文献求助10
2秒前
2秒前
通~发布了新的文献求助10
3秒前
3秒前
xiaohongmao完成签到,获得积分10
3秒前
科研通AI5应助6680668采纳,获得10
4秒前
4秒前
卡卡发布了新的文献求助10
5秒前
6秒前
欢呼鼠标发布了新的文献求助10
6秒前
appearance发布了新的文献求助10
6秒前
奋斗的凡完成签到 ,获得积分10
6秒前
ice完成签到 ,获得积分10
7秒前
junc完成签到,获得积分10
7秒前
小小完成签到,获得积分20
7秒前
9秒前
10秒前
R先生完成签到,获得积分10
10秒前
小土豆完成签到,获得积分10
10秒前
申小萌完成签到,获得积分10
10秒前
饭小心发布了新的文献求助10
10秒前
kevindeng完成签到,获得积分10
11秒前
11秒前
11秒前
肖俊彦发布了新的文献求助10
11秒前
情怀应助星星泡饭采纳,获得10
11秒前
11秒前
12秒前
12秒前
云_123发布了新的文献求助10
13秒前
所所应助德德采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762