Development of a genome‐wide 200K SNP array and its application for high‐density genetic mapping and origin analysis of Camellia sinensis

生物 山茶 单核苷酸多态性 基因组 遗传多样性 SNP公司 SNP阵列 遗传学 基因 植物 基因型 人口 社会学 人口学
作者
Kang Wei,Xinchao Wang,Xinyuan Hao,Yinhong Qian,Xin Li,Li-Yi Xu,Li Ruan,Yongxin Wang,Yazhen Zhang,Peixian Bai,Qiang Li,Shirin Aktar,Xili Hu,Guoyang Zheng,Liubin Wang,Benying Liu,Weizhong He,Hao Cheng,Liyuan Wang
出处
期刊:Plant Biotechnology Journal [Wiley]
卷期号:20 (3): 414-416 被引量:18
标识
DOI:10.1111/pbi.13761
摘要

Tea is one of the most popular drinks in the world. It is a self-incompatible plant species, and its self-incompatibility greatly contributes to its high genetic diversity. Cultivated tea plants mainly include Camellia sinensis var. assamica (CSA) and Camellia sinensis var. sinensis (CSS). The former is characterized by large leaves, cold sensitive phenotype, and an arborous or semi-arborous habit, whereas CSS is characterized by smaller leaves, cold tolerance, and a shrub or semi-shrub growth habit. However, their genetic diversity and differentiation, especially the original relationship, still remain elusive. Earlier publications revealed a total of 218.9 million high-quality variants based on the chromosome-level reference genomes and re-sequencing data of tea plants (Wang et al., 2020). Following the SNP selection process, 5 360 472 SNPs were selected with minor allele frequencies >0.1. Then considering the genome-wide uniform distribution and location of SNPs on or close to genes, a set of 179 970 SNPs uniformly distributed across the genome were chosen for the development of the 200K Affymetrix Axiom SNP array. Relative information was deposited in the National Center for Biotechnology Information with accession number of GSE182082 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE182082). All samples passed the quality assessment with an average call rate of 98.1%. The SNP reproducibility of duplicated samples was 99.71% for 'LJ43' and 99.67% for 'BHZ'. The consistent rates of the genotyped SNPs of the SNP array and re-sequencing data of 21 overlapped tea cultivars ranged from 64.14% to 91.93%, with an average of 84.07%. We further analyzed the discrepancy types of the genotyped SNPs in the overlapped cultivars (Figure 1a). Most of the discrepancies (78.3%) occurred as heterozygous by re-sequencing, but homozygous by the SNP array. We then randomly selected 18 discrepant SNPs and performed Sanger sequencing PCR for verification. Eight of them were consistent with the SNP array results, and ten were consistent with the re-sequencing data. It was found that re-sequencing tends to overestimate heterozygous sites, while the SNP array tends to mistake heterozygous sites for homozygous sites. Torkamaneh et al. (2016) found that SNP catalogues called from different pipelines or technologies might not be consistent. Here, our results showed that neither re-sequencing nor the SNP array can guarantee 100% correct results. Therefore, the mutual verification of different methods is very important. To construct a high-density genetic map, an F1 population with 327 individuals was genotyped by the tea 200K SNP array. After filtering for quality and missing data, a total of 18226 SNPs were found to be polymorphic. All these SNPs were merged into the existing genetic linkage map using 2b-RAD sequencing (Xu et al., 2018), leading to about three-fold increase in the markers. After binning of redundant markers, totally 5325 bin markers over 15 linkage groups (LGs) covering 2107.01 cm were obtained (Figure 1b,c). The distances of the bin markers ranged from 0.31 cm in LG3 to 0.52 cm in LG12, with an average of 0.39 cm. We then performed chromosomal collinearity analysis of the high-density genetic map and the published CSS ('SCZ' and 'LJ43') and ancient tea ('DASZ') genomes (Figure 1d). The genetic map is highly consistent with the published tea genomes, but better collinearities were identified with the CSS than those of ancient tea, suggesting the existence of a lot of differences in each chromosome of CSS and ancient tea. To validate the application of the high-density genetic map, we used the F1 population to measure a trait 'seed setting rate (SSR)' (Figure 1e,f). The phenotypic data were collected from the population grown at Hangzhou in 2020 and Shengzhou from 2019 to 2020, China. A total of four overlapped QTLs were identified, which were mapped to LG1, 2, 5 and 15, respectively. Taking the QTL in LG15 for example, it was then mapped to the reference tea genome of 'SCZ' (Xia et al., 2020), with an interval of 752.9 kb. A total of 16 genes were identified in this region. Among them was an apyrase gene (TEA033353.1) showing higher expressions in its flower and fruit (Figure 1g). Its homologous genes in Arabidopsis (AtAPY6 and AtAPY7) are closely associated with fertility (Yang et al., 2013). To verify the function of TEA033353.1, it was expressed under the control of the CaMV 35S promoter in Arabidopsis (Figure 1h). Surprisingly, the transgenic lines showed late bolting and flowering phenotypes, indicating that it negatively controls fertility. This case study also suggests that the SNP array is useful for further genetics research. To gain a better understanding of the domestication and classification of tea, we performed population structure and phylogenetic analysis of 142 tea cultivars bred from different provinces of China (Figure 1i–k). At a K value = 3, CSA, CSS, and a transitional type could be clearly distinguished (Figure 1i). Many cultivars in the transitional type were artificial hybrids from CSA and CSS, indicating that they are the transition between the two types. The phylogenetic tree analysis is consistent with the structure results (Figure 1j). Moreover, we found that cultivars of CSS were clustered tightly together in the phylogenetic tree, suggesting that the genetic variation within the CSS group was much less than that among the remaining cultivars. The position of CSA, CSS, and the transitional type reflects their evolutionary relationship. We then calculated Wright's F-statistic (FST) to estimate the genetic divergence of CSS and the remaining cultivars (Figure 1k). There were distinct patterns in the distribution of windowed FST values for each LG. A total of 1.24% of the FST windows were under strong selective sweeps (FST > 0.15), with large effects mainly in LG1, 9 and 13. Interestingly, we identified two selection signatures in the CSS population. One is an isoeugenol synthase gene cluster in LG1 correlated with the biosynthesis of (E)-isoeugenol, a characteristic aroma component of green tea (Baba and Kumazawa, 2014). The other is a BRI1-like 2 gene (TEA021769) in LG9, whose expression in CSA is >10-fold higher than that in CSS. BRI1 is a receptor kinase of brassinosteroids controlling plant development (Tang et al., 2008). Further exploitation of these genes would contribute to the interpretation of the CSS evolution process. In summary, our SNP array data show that it is a useful platform for original analysis and forward genetics research. We gratefully acknowledge the financial support of the National Key R&D Program of China (2018YFD1000601), the National Natural Science Foundation of China (32070335), the Central Public Interest Scientific Institution Basal Research Fund (1610212020002), the Major Project of Agricultural Science and Technology in Breeding of Tea Plant Variety in Zhejiang Province (2021C02067), and the Science and Technology Plan Project of Lishui (2020ZDYF05). The authors declare no competing financial interests. K.W., X.W., X.H., Y.Q., and X.L. carried out data analysis and drafted the manuscript. L.X. constructed the genetic linkage map. L.R., Y.W., Y.Z., P.B., Q.L., S.A., S.X., X.H., G.Z., B.L., M.H., and L.W. collected samples and performed the experiments. X.W. and W.H. discussed the results. H.C. and L.W. managed the research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恰饭发布了新的文献求助10
1秒前
菊花芭比cz完成签到,获得积分10
2秒前
Hhhh完成签到 ,获得积分10
2秒前
从容芮应助fang采纳,获得10
5秒前
6秒前
7秒前
7秒前
8秒前
sunishope发布了新的文献求助10
9秒前
10秒前
may完成签到,获得积分10
10秒前
Tumumu发布了新的文献求助10
11秒前
12秒前
13秒前
酷波er应助hchen采纳,获得10
14秒前
Mon_zh发布了新的文献求助10
15秒前
帅哥发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
爱听歌的寄云完成签到,获得积分10
17秒前
long完成签到,获得积分10
17秒前
CipherSage应助可靠的清涟采纳,获得10
18秒前
z23150007完成签到,获得积分20
18秒前
20秒前
晓天完成签到,获得积分10
20秒前
21秒前
藤藤完成签到,获得积分10
21秒前
22秒前
xzy998应助纯真涵菱采纳,获得10
22秒前
阳光血茗完成签到,获得积分10
22秒前
long发布了新的文献求助30
22秒前
24秒前
帅哥完成签到,获得积分20
24秒前
26秒前
SciGPT应助z23150007采纳,获得10
27秒前
xiaozixuan发布了新的文献求助10
27秒前
28秒前
万能图书馆应助sunishope采纳,获得10
28秒前
薛烨伟完成签到,获得积分10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314016
求助须知:如何正确求助?哪些是违规求助? 2946405
关于积分的说明 8529984
捐赠科研通 2622049
什么是DOI,文献DOI怎么找? 1434315
科研通“疑难数据库(出版商)”最低求助积分说明 665201
邀请新用户注册赠送积分活动 650792