RPS‐Net: An effective retinal image projection segmentation network for retinal vessels and foveal avascular zone based on OCTA data

人工智能 计算机科学 投影(关系代数) 分割 计算机视觉 中央凹 中央凹无血管区 图像分割 光学相干层析成像 模式识别(心理学) 视网膜 光学相干断层摄影术 算法 光学 化学 物理 生物化学
作者
Weisheng Li,Hongchuan Zhang,Feiyan Li,Linhong Wang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (6): 3830-3844 被引量:11
标识
DOI:10.1002/mp.15608
摘要

Optical coherence tomography angiography (OCTA) is an advanced imaging technology that can present the three-dimensional (3D) structure of retinal vessels (RVs). Quantitative analysis of retinal vessel density and foveal avascular zone (FAZ) area is of great significance in clinical diagnosis, and the automatic semantic segmentation at the pixel level helps quantitative analysis. The existing segmentation methods cannot effectively use the volume data and projection map data of the OCTA image at the same time and lack the trade-off between global perception and local details, which lead to problems such as discontinuity of segmentation results and deviation of morphological estimation.In order to better assist physicians in clinical diagnosis and treatment, the segmentation accuracy of RVs and FAZ needs to be further improved. In this work, we propose an effective retinal image projection segmentation network (RPS-Net) to achieve accurate RVs and FAZ segmentation. Experiments show that this network exhibits good performance and outperforms other existing methods.Our method considers three aspects. First, we use two parallel projection paths to learn global perceptual features and local supplementary details. Second, we use the dual-way projection learning module to reduce the depth of the 3D data and learn image spatial features. Finally, we merged the two-dimensional features learned from the volume data with the two-dimensional projection data, and used a U-shaped network to further learn and generate the final result.We validated our model on the OCTA-500, which is a large multi-modal, multi-task retinal dataset. The experimental results showed that our method achieved state-of-the-art performance; the mean Dice coefficients for RVs are 89.89 ± 2.60 (%) and 91.40 ± 9.18 (%) on the two subsets, while the Dice coefficients for FAZ are 91.55 ± 2.05 (%) and 97.80 ± 2.75 (%), respectively.Our method can make full use of the information of 3D data and 2D data to generate segmented images with higher continuity and accuracy. Code is available at https://github.com/hchuanZ/MFFN/tree/master.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
lmh完成签到,获得积分20
4秒前
怕孤单的安莲完成签到,获得积分10
5秒前
科目三应助yingtiao采纳,获得20
6秒前
吱哦周完成签到,获得积分10
7秒前
jorong完成签到,获得积分10
7秒前
for发布了新的文献求助10
8秒前
欣慰的乐安完成签到,获得积分10
8秒前
Linda完成签到,获得积分10
10秒前
得偿所愿发布了新的文献求助10
10秒前
13秒前
冷静的小土豆完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
蒋时晏应助Billy采纳,获得30
15秒前
15秒前
你好这位仁兄完成签到,获得积分10
16秒前
17秒前
17秒前
sci发布了新的文献求助10
18秒前
九月完成签到,获得积分10
18秒前
David应助asd采纳,获得10
19秒前
Bao发布了新的文献求助10
19秒前
19秒前
zzj完成签到 ,获得积分10
20秒前
20秒前
机器猫发布了新的文献求助10
20秒前
20秒前
丢丢发布了新的文献求助10
20秒前
21秒前
丁小丁完成签到,获得积分10
21秒前
21秒前
啦咯哦哦发布了新的文献求助10
23秒前
23秒前
孙禹薇发布了新的文献求助20
23秒前
24秒前
yoyocici1505完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312450
求助须知:如何正确求助?哪些是违规求助? 2945105
关于积分的说明 8522863
捐赠科研通 2620823
什么是DOI,文献DOI怎么找? 1433131
科研通“疑难数据库(出版商)”最低求助积分说明 664863
邀请新用户注册赠送积分活动 650231