生物电子学
材料科学
自愈水凝胶
生物相容性
导电聚合物
聚合物
纳米技术
导电体
电导率
复合材料
生物传感器
高分子化学
物理化学
化学
冶金
作者
Gang Li,Kaixi Huang,Jue Deng,Mengxue Guo,Minkun Cai,Yuan Zhang,Chuan Fei Guo
标识
DOI:10.1002/adma.202200261
摘要
Conducting polymer hydrogels are promising materials in soft bioelectronics because of their tissue-like mechanical properties and the capability of electrical interaction with tissues. However, it is challenging to balance electrical conductivity and mechanical stretchability: pure conducting polymer hydrogels are highly conductive, but they are brittle; while incorporating the conducting network with a soft network to form a double network can improve the stretchability, its electrical conductivity significantly decreases. Here, the problem is addressed by concentrating a poorly crosslinked precursor hydrogel with a high content ratio of the conducting polymer to achieve a densified double-network hydrogel (5.5 wt% conducting polymer), exhibiting both high electrical conductivity (≈10 S cm-1 ) and a large fracture strain (≈150%), in addition to high biocompatibility, tissue-like softness, low swelling ratio, and desired electrochemical properties for bioelectronics. A surface grafting method is further used to form an adhesive layer on the conducting hydrogel, enabling robust and rapid bonding on the tissues. Furthermore, the proposed hydrogel is applied to show high-quality physiological signal recording and reliable, low-voltage electrical stimulation based on an in vivo rat model. This method provides an ideal strategy for rapid and reliable tissue-device integration with high-quality electrical communications.
科研通智能强力驱动
Strongly Powered by AbleSci AI