秀丽隐杆线虫
生物
模式生物
有机体
计算生物学
隐杆线虫病
基因组
体内
生物技术
模型系统
基因
遗传学
作者
Natalie Mudd,Andrea M. Liceaga
标识
DOI:10.1016/j.crfs.2022.05.001
摘要
Caenorhabditis elegans (C. elegans) is being widely explored as an in vivo model to study the effects of food bioactives. These nematodes are largely advantageous over other in vivo models as they are relatively inexpensive, have a short generation time, and have a completely sequenced genome, among other advantages. C. elegans is a commonly used model to study diseases such as Alzheimer's and Parkinson's disease; however, researchers are finding they can also give insight into the health promoting effect of food-derived bioactive compounds. As consumers become more aware of the health benefits of the foods that they consume, the study of bioactive properties of foods and food constituents is becoming an important source of information. This review focuses on the advantages of using C. elegans as a model such as their short lifespans, high level of gene conservation relative to humans, and large number of progenies per reproductive cycle. They are also easily manipulated in order to perform controlled experiments on synchronous populations. Through review of recent literature, it is clear that C. elegans can be used to study a range of food derived compounds such as bioactive peptides, phenolic compounds, carbohydrates, and lipids. This review also provides information on potential challenges associated with working with this nematode. These challenges include the need for a sterile environment, potential inaccuracy when determining if the nematodes are dead, and the simplicity of the organism making it not suitable for all studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI